Глава 8 Судный день откладывается

Один из сценариев конца света, который ученые считают настолько маловероятным, что даже исключили его из рассмотрения, выглядит следующим образом: где-то в районе густонаселенного острова Лонг-Айленд непосредственно к востоку от Манхэттена под землей произойдет страшная катастрофа139. А вызвана она будет экспериментами на коллайдере. Итак, в ускорителе, уже проработавшем без сбоев до этого в течение нескольких лет, ионы золота неоднократно сталкивались друг с другом, при этом выделялось так много энергии, что протоны и нейтроны внутри ионов распадались, испуская потоки кварков и связывающих их частиц — глюонов.

Обычно освобожденные при столкновении кварки потом опять собираются вместе и формируют безвредные субатомные частицы. Но однажды происходит столкновение, отличающееся от предыдущих. На этот раз при рекомбинации кварков случайно образуется необычная частичка материи. Она оказывается выброшенной из основной трубы ускорителя и оседает на одном из гигантских магнитов, окружающих детектор.

Прикрепившись к поверхности, эта новая частица начинает вести себя довольно нестандартным образом — она притягивает и поглощает атомы, которые находятся вокруг нее. По мере того как частица разбухает и увеличивается в размерах, к ней притягивается все больше и больше соседей — их она тоже поглощает. А потом наступает момент, когда эта огромная уже частица падает, не замеченная никем, и проваливается через бетон в землю.

Невидимая и непрерывно растущая частица материи устремляется к центру нашей планеты, преобразуя материю на своем пути и высвобождая достаточное количество тепла, чтобы расплавить камень и руду. Вскоре земля под юго-восточной окраиной Нью-Йорка начинает содрогаться и грохотать. А потом в землю проваливаются города, выкипает океан и наконец со страшным треском раскалывается наша Земля. От нее остается лишь шар горячей материи размером не намного больше крикетного поля Лорда в Лондоне.

Фрэнк Вильчек редко тратил свой летний отпуск на обдумывание подобных, поистине безумных сценариев наступления конца света. Обычно он отправлялся в Нью-Гэмпшир и в уединении наслаждался солнцем и спокойной жизнью вдали от городской суеты. Там не было телефона, и всем, кому хотелось с ним поговорить, приходилось ждать его возвращения.

Но летом 1999 года все было иначе. Несколькими месяцами ранее в журнале появилась статья под названием “Маленький Большой взрыв”. В ней рассказывалось о релятивистском коллайдере тяжелых ионов (RHIC), неофициально называемом РИКом. Его хотели построить на Лонг-Айленде140. В RHIC планировалось сталкивать друг с другом ионы золота. С помощью ускорителя ученые надеялись получить и изучить экзотический вид материи, существовавший, как они полагали, на раннем этапе рождения Вселенной.

И вот в редакцию журнала “Scientific American” пришло два письма. В них выражалась обеспоконнность по поводу этого нового коллайдера частиц. Одно из писем было от Майкла Когилла из Британской Колумбии. “Я обеспокоен тем, что физики смело вторгаются туда, куда, быть может, идти совсем небезопасно, — писал он. — Что, если они каким-то образом изменят глубинную природу вещей так, что она уже никогда не сможет стать прежней?” Второе письмо пришло от Уолтера Вагнера с Гавайев. Он спрашивал, уверены ли ученые на 100 процентов, что RHIC не создаст случайно черную дыру, которая за считанные секунды поглотит всю нашу планету?

Письма дали старт безумной панике — журналисты принялись писать об опасности, якобы исходящей от физики элементарных частиц. Вопросы их читателей были справедливыми и затрагивали важные научные проблемы, но выводы, которые при этом делались, были почти так же нелепы, как апокалипсический сценарий конца света, описанный выше. Кульминацией сей кампании стал судебный иск, в котором истцы требовали вообще закрыть американские и европейские коллайдеры частиц. В случае их выигрыша об охоте на частицы Хиггса пришлось бы забыть навсегда.

Редакторы журнала “Scientific American” решили получить ответы на вопросы читателей от ведущих ученых в этой области. Первым делом позвонили Вильчеку. Он с удовольствием откликнулся. Незадолго до отъезда в Нью-Гэмпшир он отправил в редакцию свой текст, который должен был появиться вместе с письмами читателей уже в июльском номере журнала.

Вильчек объяснил, почему черные дыры не могут образоваться в РИКе, однако этим не ограничился. Он обсудил также другую умозрительную, но “вполне заслуживающую внимания вероятность” — создание в коллайдере новой стабильной формы материи, называемой странглетами. “Возможно, стоит побеспокоиться по поводу осуществления сценария типа перехода воды в “лед-9” (см.: К. Воннегут, “Колыбель для кошки”), когда странглеты будут расти за счет включения и преобразования обычного, окружающего их вещества. Но даже странглеты-разрушители, если бы и могли родиться, не способны инициировать гибель нашего мира”, — писал Вильчек. Ученый был уверен, что привнес покой в души читателей — ведь он все очень понятно объяснил. Итак, в ближайшее время бояться появления черных дыр под Нью-Йорком совершенно глупо. В конце своего опуса Вильчек предложил читателям интересную абстрактную задачку для тренировки ума. “Я захотел воспользоваться случаем и немного побыть педагогом, — говорил мне Вильчек десять лет спустя. — Появление странглетов — непростая научная проблема, и я рассказал про нее, а чтобы заинтриговать читателей, попытался сказать что-то вроде: ну, если вы действительно хотите о чем-то беспокоиться, беспокойтесь лучше об этом”. Когда текст Вильчека попал в “Scientific American”, редакторы журнала сочли, что он слишком длинный, и сократили около трети141. Правка существенно изменила расстановку акцентов. В отредактированном варианте рассуждения Вильчека о безопасности хшцников-странглетов оказались менее убедительными. “Редакторы сделали гораздо менее категоричным утверждение о том, что сценарий со странглетами совершенно неправдоподобен”, — вспоминал позже Вильчек.

Директор Брукхейвенской национальной лаборатории Джон Марбургер услышал, что в “Scientific American” собираются опубликовать вопросы читателей и ответ Вильчека как раз тогда, когда коллайдер готовился к запуску. Марбургер был назначен главой лаборатории годом ранее — ему предстояло принять на себя ответственность за этот важный правительственный объект. То было непростое время для лаборатории — возникла утечка радиоактивных материалов из одного из исследовательских реакторов. Утечка, хотя и вполне безобидная, вызвала громкий шум и волну общественных протестов142. Взрыв возмущений был столь сильным, что Министерство энергетики приняло решение закрыть тот реактор и провести операции по очистке, стоившие много миллионов долларов.

Марбургер, позднее назначенный советником по науке в администрации президента Джорджа Буша, почувствовал приближение беды. “Scientific American” — очень авторитетный журнал, а Вильчек — известный физик. Местная общественность не доверяла правительству и чиновникам, руководящим лабораторией. Из-за журнальных публикаций — читательских писем и особенно ответа Вильчека — мог возникнуть как минимум публичный конфликт с общественностью, если не более серьезные неприятности. “Я сразу понял — назревает колоссальная проблема, — вспоминал Марбургер. — Даже малая вероятность события, которое способно повлечь разрушение Земли, несомненно, требует серьезного обсуждения”.

Перед тем как тот июльский номер “Scientific American” вышел из печати, Марбургер собрал физиков на совещание. Он попросил их просмотреть все сценарии катастроф, даже нереальных, которые мог бы инициировать работающий коллайдер. “Первый человек, которого я позвал на совещание, был Фрэнк Вильчек, — рассказывал Марбургер. — Моя позиция была такая: ОК, Фрэнк, вы заварили эту кашу, теперь вы должны помочь ее расхлебать”.

Через несколько дней после того, как номер “Scientific American” появился в продаже, поднялась буря. 18 июля лондонская газета “Sunday Times” вышла со статьей под заголовком “Большой взрыв, воссозданный в ускорителе, может уничтожить Землю”. Автор статьи говорил о том, что ускоритель RHIC находится “под расследованием” и что Марбургер поручил экспертам оценить, “может ли реализация проекта ускорителя вызвать катастрофу”. В сопровождающем статью редакционном комментарии подытоживалось: “Итак, люди в белых халатах готовы отправить всех нас, и себя в том числе, на съедение черной дыре, которую они же и сотворят”. Известно, что в летние месяцы британские газеты порой бывают весьма не сдержанны.

Другие средства массовой информации, разумеется, тут же с удовольствием подхватили сенсационную тему. Некоторые называли RHIC “машиной Судного дня”. Пресс-служба Брукхейвенской лаборатории не успевала отвечать на звонки. Кто-то хотел знать, не черная ли дыра, рожденная в ускорителе, сбила самолет Джона Кеннеди-младшего143. Чтобы разрядить ситуацию, Марбургер в своем заявлении напомнил, что ученые не большие безумцы, чем другие люди, и не готовы взорвать себя вместе с окружающим миром.

Все хотели услышать комментарии от Фрэнка Вильчека, но он уже уехал в Нью-Гэмпшир. “У меня там нет стационарного телефона, а мобильных телефонов в то время не существовало. Корреспонденты со всего мира осаждали меня, и приходилось ездить на машине к телефону-автомату — отвечать на их вопросы”, — говорит Вильчек.

Шум вокруг коллайдера сослужил ему не только дурную службу. Статья в “Sunday Times” обеспечила машине рекламу по всему миру. К счастью, за каждой статьей, предсказывающей конец света, шли и другие, более взвешенные и спокойные, объяснявшие публике значение экспериментов в Брукхейвене.

А между тем руководство ЦЕРНа поняло, что европейский ускоритель тоже неизбежно станет мишенью для крикливой группки людей, которые явно демонстрировали желание закрыть все существующие в мире коллайдеры частиц. Гигантской машине LEP оставался только год или около того до завершения эксперимента, и она почему-то все еще не уничтожила мир. Что расстраивало ЦЕРН больше всего, так это перспектива негативного настроя общественности в отношении Большого адронного коллайдера, которому было предназначено стать самым мощным коллайдером частиц в мире. Если его строительство будет заморожено из-за отсутствия общественной поддержки, ученые так никогда и не найдут частицы Хиггса. Множество других теорий также можно было смело выбросить на свалку — туда, где уже покоилось множество непроверенных научных идей...

Эксперименты на ускорителе в Брукхейвенской национальной лаборатории и ЦЕРНе создали прецедент — правительство впервые потребовало от ученых ответить на вопрос, могут ли лабораторные эксперименты разрушить планету. Похожая ситуация возникла только раз в истории — в 1945 году, когда Эмиль Конопинский и Эдвард Теллер, занятые в Манхэттенском проекте, рассчитали вероятность того, что ядерные бомбы выжгут атмосферу Земли. Тогда их расчеты показали: это невозможно, по крайней мере, этого не могли сделать бомбы, имевшиеся в распоряжении людей в то время. Однако Энрико Ферми все-таки устроил тотализатор — наступит ли конец света 16 июля того года, когда на полигоне Тринити взорвут первую атомную бомбу.

Комитеты по безопасности, куда вошли ученые Брукхейвенской национальной лаборатории и ЦЕРНа, просмотрели сценарии, которые считались потенциально катастрофическими для планеты. В их число был включен и сценарий случайного создания опасных странглетов (некоторые разновидности странглетов считаются полностью безопасными), возникновение черной дыры, которая сожрет Землю в мгновение ока; создание магнитных монополей, уничтожающих атомы, и совершенно кошмарный сценарий, носящий кажущееся на первый взгляд безобидным имя “вакуумный распад”.

Ссылка Вильчека на “лед-9” отсылала к знаменитому роману Курта Воннегута “Колыбель для кошки” (1963). в котором описывается гибель мира из-за поглощения всей воды на планете альтернативной, более стабильной формой льда, случайно изобретенной военными. Твердый лед-9 создавался для того, чтобы избавиться от грязи, в которой увязали солдаты и армейские транспортные средства. Один кристаллик льда-9, брошенный в жидкую грязь, становился центром кристаллизации — зародышем, за который цеплялись окружающие молекулы воды; они замораживались, превращаясь в новую кристаллическую структуру, твердую как дерево. В отличие от обычного льда лед-9 не таял до температуры 45,8 градуса по Цельсию.

За год до выхода “Колыбели для кошки” ученые в России создали нечто подобное льду-9, и это вызвало панику. Химик Николай Федякин работал в одном из костромских институтов. Он изучал поведение воды в тонких стеклянных капиллярах. Однажды он рассматривал капилляры, наполовину заполненные водой, и заметил, что на поверхности обычной воды появились отдельные пятнышки “другой” воды. С течением времени они разрастались за счет обычной воды под ними. Измерения показали, что эта новая вода намного плотнее, чем обычная. Федякин был ошеломлен. Его опыты указывали на существование новой фазы воды, способной образовываться из обычной при контакте с ней, более того, она, эта новая, неизвестная ранее фаза, оказалась более стабильной!

Большие открытия обычно недолго остаются запертыми в стенах лабораторий. Когда поползли слухи об открытии, опыты Федякина перепроверили в Москве, там за это дело взялся крупный советский ученый Борис Дерягин. Дерягин, известный своей педантичностью и дотошностью, повторил эксперименты Федякина и пришел к тем же выводам. Он объявил об открытии “аномальной воды” — новой и ранее неизвестной фазы самой важной жизни на Земле жидкости144.

Надо отметить, что мировая научная общественность была настроена весьма скептически, но команда ученых из Бюро стандартов США опубликовала исследование, в котором подтверждались выводы россиян! Американские ученые изучили поглощение инфракрасного излучения аномальной водой и убедились, что оно отличается от поглощения обычной водой. Более того — они пошли дальше и назвали жидкость поливодой, потому что считали, что она — гель, в котором молекулы воды соединившись друг с другом, образовали полимерные цепочки и гексагональные кольца.

Казалось, поливода имеет некоторое неприятное сходство с воннегутовским льдом-9. Кое-кто из ученых думал, что она стабильнее обычной воды и плавится при более высокой температуре, чем лед. Если бы это было так и такой лед был создан и вброшен в реку, он мог бы постепенно заполимеризовать всю воду, имеющуюся на Земле. Другими словами, молекулы воды собирались бы вместе и образовывали гигантские молекулы, похожие на полимерные молекулы в пластмассах. Последствия для жизни на нашей планете были бы столь ужасными, что лучше и не думать. В октябре 1969 года журнал “Nature” опубликовал письмо читателя Ф. Донахью из Уилкс-колледжа в Пенсильвании, который потребовал от ученых подтверждения безопасности поливоды. “Последствия ошибки в этом вопросе настолько серьезны, что нас могут убедить только безусловные доказательства ее безопасности, — писал Донахью. — Я считаю, что эти полимеры — самые опасные на Земле материалы. <...>Ученым всего мира необходимо крайне осторожно обращаться с поливодой — как с самым смертоносным вирусом — до тех пор, пока ее безопасность не будет доказана”.

Несмотря на все поразительные эксперименты с поливодой, многие ученые по-прежнему не верили в ее существование. Скептики утверждали, что если более стабильная “полимерная” форма воды действительно существует, то мы, несомненно, уже давно нашли бы ее, этот гель, состоящий из вязких нитей. Великий физик Ричард Фейнман заметил по этому поводу, что за миллионы лет эволюция вывела бы тогда существо, единственным способом выживания которого было бы поглощение и выведение поливоды из организма. А за счет выделявшейся при преобразовании воды в поливоду энергии оно могло бы прекрасно существовать.

Как Фейнман и подозревал, поливода оказалась фикцией. После нескольких лет экспериментальных проверок ученые поняли, что единственное отличие поливоды от нормальной воды — количество содержащихся в ней примесей, в основном собранных со стенок стеклянных капилляров, в которых она хранилась. Вся эта история с поливодой, с момента ажиотажного открытия до довольно застенчивого закрытия, длилась всего десятилетие.

Опасения, что поливода заполимеризует все реки и океаны, быстро улетучились, но страхи по поводу всяческих экзотических трансформаций земных веществ — нет. Через несколько лет после того, как шум с поливодой затих, нобелевский лауреат американский физик китайского происхождения Цзун-Дао Ли и итальянский теоретик Джайан Карло Вик предположили, что коллайдеры частиц могли бы с такой силой столкнуть атомные ядра, что они образовали бы стабильную и невероятно плотную форму материи. Ли был так увлечен этой идеей, что предложил экспериментаторам проверить его гипотезу. Для этого только требовалось соединить два ускорителя частиц и попробовать создать некоторое количество такого вещества, направив пучки на мишени.

В Лоуренсовской национальной лаборатории (Беркли, Калифорния) решили проверить эту гипотезу и приступили к работе. Инженеры состыковали два ускорителя так, чтобы один впрыскивал атомные ядра в другой, а тот ускорял их до еще больших скоростей и обрушивал на мишени. К середине 1970-х, когда машина была готова к запуску, ученые не знали, смогут ли они создать “аномальную материю” Ли и Вика. Зато они хорошо знали, что, если ее создадут, она может оказаться опасной.

В мае 1979 года, спустя годы после того, как ускоритель “Бевалак” был запущен, но еще до того, как в нем начали разгонять такие тяжелые ионы, как ионы урана, ведущие ученые собрались в лаборатории, чтобы в обстановке секретности обсудить вопрос о том, могла ли в “Бевалаке” появиться аномально плотная материя Ли и Вика и представляет ли она опасность145. Снова замаячил на горизонте страшный сценарий льда-9. Если аномальная материя более стабильна, чем обычная, даже крошечное ее количество способно вызвать глобальные бедствия, преобразуя все вещество, с которым она вступит в контакт.

Собравшиеся эксперты, среди которых были Цзун-Дао Ли и Бернард Харви, заместитель директора отделения ядерной физики Лоуренсовской лаборатории, провели полтора дня, обсуждая вероятность катастрофического сценария — ведь если она ненулевая, необходимо срочно прекратить эксперименты на “Бевалаке”. Когда совещание подошло к концу, эксперты сошлись во мнении, что аномальная материя не представляет никакой опасности. Гораздо более сильные соударения происходили на Луне в течение миллиардов лет при бомбардировке лунной поверхности космическими лучами. Если бы при этом образовывалась аномальная материя и она была бы опасной, Луны бы уже не было. Но, поскольку с нашим спутником, кажется, все в порядке, ученые заключили, что нет причин для беспокойства и за Землю.

Исследователи и инженеры, связанные с машиной, должны были учитывать кроме глобального еще и личные риски, хотя большинство, несомненно, не верило в то, что им грозит опасность. С конца 1970-х до середины 1990-х годов США пережили серию странных терактов, направленных против ученых и сотрудников авиакомпаний. Агенты ФБР, расследующие эти взрывы, знали, что подозреваемый, которому они дали кличку Унабомбер, испытывает глубокое отвращение к новым технологиям, несущим человечеству еще неизвестные угрозы.

За год до выключения “Бевалака” два физика, Гэри Уэстфолл из Мичиганского государственного университета и Сабул Дас Гупта из Университета Макгилла в Монреале, написали статью для журнала “Physics Today” о достижениях “Бевалака”. В статье рассказывалось и о том, как “за закрытыми дверьми проводились встречи, на которых ученые обсуждали, был ли риск катастрофы настолько серьезен, чтобы отменить эксперименты по соображениям безопасности”. И авторы добавляли: “Эксперименты в конечном итоге были проведены, и, к счастью, никакой катастрофы не случилось”.

Когда статья была опубликована, в ФБР стали опасаться, что Уэстфолл и Дас Гупта могут стать следующей мишенью для Унабомбера. Оба были включены в список потенциальных мишеней. Уэстфолл дал свое согласие на то, чтобы его почту проверяли на наличие взрывчатки. Дас Гупта от этого отказался, доверив обеспечение своей безопасности канадской почтовой службе и секретарю университета. Взрывчатку ученым так никто и не послал.

Унабомбер был арестован примерно через год. Им оказался Теодор Качинский, математик, окончивший Гарвард, позже — профессор Университета Беркли в Калифорнии. В то время он уже жил отшельником в лачуге в штате Монтана и оттуда организовывал взрывы. Его арестовали после того, как брат Качинского обнаружил знакомые стилистические особенности в восьмистраничном манифесте, опубликованном двумя крупными газетами. В этом манифесте Унабомбер задавался вопросом о том, какая мотивация была у Эдварда Теллера при разработке водородной бомбы, и предупреждал: “Технофилы совершенно безответственно отправляют нас всех в путешествие в неизвестное”.

К тому времени, как коллайдер РИК в Брукхейвенской лаборатории был готов к запуску, паника по поводу аномальной материи Ли и Вика уже прошла. Но статья Вильчека в “Scientific American” уверила людей, что теперь роль чудовища, угрожающего миру уничтожением, готовы взять на себя ненасытные мародеры-странглеты. Ученым пришла в голову идея о странглетах, когда они размышляли о том, что произойдет, если протоны и нейтроны внутри атомных ядер сдавить экстремально большим давлением. Такое могло бы случиться в природе — к примеру, в центре нейтронных звезд, которые образуются, когда обычные звезды взрываются и коллапсируют под действием собственной гравитации. Нейтронные звезды — поразительно плотные объекты: чайная ложка вещества, взятого из ядра такой звезды, может весить около 100 миллионов тонн.

Нормальные протоны и нейтроны состоят из двух видов кварков, называемых верхними и нижними кварками, но ученые подозревают, что некоторые из них при высоком давлении могут перейти в третий вид — странные кварки. Образующаяся смесь кварков называется странглетом. В 1984 году Эд Виттен, физик из Института перспективных исследований в Принстоне, которого многие полагали преемником Эйнштейна, рассчитал, что, если только странглеты будут созданы, они останутся стабильными, даже если убрать огромное давление, необходимое для их образования. Своей статьей он заронил опасения в душах читателей: окажись странглеты более стабильными, чем обычная материя, они смогут запустить сценарий типа льда-9, описанный Вильчеком!

Комиссия по безопасности в Брукхейвенской лаборатории и ЦЕРНе обнародовала подробные теоретические обоснования того, почему ни на одном коллайдере не нужно бояться образования странглетов146. Аргументы приводились следующие: если странглеты вообще могут существовать, их трудно создать, а если их все-таки получат, то они будут нестабильны. А если им удалось бы задержаться в этом мире дольше, чем ожидалось, они почти наверняка были бы положительно заряжены и потому не смогли бы притянуть атомные ядра и поглотить их.

До сих пор от ученых поступали уверения в безопасности ускорителей, основанные только на теоретических расчетах. Гарвардские физики Шелдон Глэшоу и Ричард Уилсон сформулировали общую неудовлетворенность этим положением вещей в статье, опубликованной в “Nature” в декабре 1999 года: “Если странглеты существуют (что вполне вероятно), и если они образуют достаточно стабильные кластеры (что вряд ли), и если они заряжены отрицательно (опять вряд ли — все теории уверенно предсказывают, что их заряд положителен), и если крошечный странглет будет создан на RHIC (что чрезвычайно маловероятно), то тут как раз мы и столкнемся с серьезной проблемой. Новорожденные странглеты могут поглотить атомные ядра, начать бесконтрольно расти и в конечном счете сожрать Землю. Одних слов “вряд ли”, хоть и многократно повторенных, все равно недостаточно, чтобы умерить наши страхи перед этим вселенским бедствием”.

Дабы придать силу и убедительность своим выводам, члены Комиссии по безопасности отметили, что природа уже за нас провела эксперименты на “космическом RHIC”. Космические лучи содержат ионы металлов, мчащиеся почти со скоростью света. Они врезаются в минералы, расположенные на поверхности Луны, в астероиды и в свободно движущиеся ионы в облаках межзвездной пыли и газа. Если бы опасные странглеты легко образовывались при столкновениях, они уже существовали бы в межзвездном пространстве.

Как и панику по поводу образования в “Бевалаке” аномальной материи Ли и Вика, страхи перед вредоносными странглетами успокаивали с помощью космических аргументов. Действительно, если за 5 миллиардов лет бомбардировки космическими лучами Луна не была съедена странглетами и не превратилась в гигантский кластер аномальной материи, вряд ли столкновения на RHIC в течение пяти лет повредят Земле. Еще один довод нашелся при анализе судеб астероидов. Действительно, если бы космические лучи создавали “астероидов-убийц”, превращая их в кластеры странглетов, некоторые из них неизбежно упали бы на Солнце или другие звезды и уничтожили бы их. Но как внимательно ученые ни рассматривали видимые в телескопы 70 миллиардов триллионов звезд, никаких других способов их умирания кроме взрыва сверхновой так и не заметили — ничего похожего на поедание странглетами!

Однако ученые ЦЕРНа все-таки проделали расчеты, дабы понять, с какой вероятностью можно ждать от Большого адронного коллайдера подобного неприятного сюрприза.

Наше собственное Солнце постоянно подвергается ударам космических лучей, имеющих энергию по крайней мере не меньшую, чем энергия пучков частиц при столкновениях на БАКе. Приняв во внимание количество звезд в наблюдаемой части Вселенной, ученые оценили, что с начала существования Вселенной природа провела в 1031 раз больше экспериментов, чем предполагается провести за всю жизнь БАКа (около 20 лет). Более того, каждую секунду совокупное воздействие космических лучей на далекие звезды в 10 триллионов раз больше, чем воздействие частиц, получаемых в ускорителе.

Из всех видов катастроф, которые рассматривали ученые в Брукхейвенской лаборатории и ЦЕРНе, наибольшее внимание средств массовой информации привлекло образование черной дыры, проглатывающей нашу планету целиком. Обе группы решительно опровергли возможность такого развития событий. Чтобы создать обычную черную дыру, коллайдеру нужно сжать невообразимо большое число частиц в столь крошечный объем, чтобы гравитация заставила бы этот кластер материи самопроизвольно сколлапсировать. Но ни один из существующих ныне в мире коллайдеров (как, впрочем, и все другие, которые могут быть постронны в обозримом будущем) на такое не способен, а потому обе команды решили не тратить слишком много времени на обсуждение этого сценария.

Нужно оговориться, что, когда ученые отвергли возможность создания в ускорителе черных дыр, они предполагали, что уравнения Эйнштейна — последнее слово в теории гравитации, однако едва ли это так. В некоторых новейших теориях предполагается, что природа имеет скрытые размерности, свернутые (компактизированные) таким образом, что мы не можем их видеть. Правда, до сих пор нет свидетельств того, что мы живем в мире более четырех измерений (три пространственных плюс время), но. если дополнительные измерения все же существуют, в современных коллайдерах частиц вполне могли бы родиться микроскопические черные дыры.

Но и тогда, убеждают нас ученые, нам нечего бояться. В 1975 году кембриджский космолог Стивен Хокинг показал, что черные дыры испускают тепло. Чем меньше их размер, тем больше тепла они теряют. Согласно теории, которая допускает дополнительные измерения, черные дыры, созданные на БАКе, будут космическими крошками диаметром около 10-15 миллиметров. При таком размере они будут экстремально горячие — примерно в миллиард раз горячее, чем вещество в центре Солнца. Хорошая новость заключается в том, что эти черные дыры будут терять тепло так быстро, что в мгновение ока испарятся.

Другой сценарий потенциальной катастрофы, который, впрочем, физики легко опровергли, — создание на ускорителе магнитных монополей. По оценкам Алана Гута, эти поистине странные частицы слишком тяжелы, чтобы их можно было создать даже в самом мощном ускорителе. Самой тяжелой из когда-либо рожденных на коллайдере частиц был обнаруженный в 1995 году на “Теватроне” истинный кварк — он весит около 170 ГэВ. Магнитные монополи, если они существуют, скорее всего, тяжелее более чем в триллион раз.

Ради интереса Комиссия по безопасности ЦЕРНа проанализировала, какой ущерб магнитный монополь мог бы нанести, появись он в их ускорителе. В некоторых теориях утверждается, что магнитные монополи опасны тем, что они преобразуют протоны и нейтроны в электроны, позитроны и другие частицы — по существу, испаряют обычную материю. Однако группа ЦЕРНа подсчитала, что магнитный монополь успеет уничтожить лишь полграмма обычной материи до того, как освободившаяся при этом энергия утащит его в космос.

Во всех этих сценариях Судного дня молчаливо предполагается, что, какой бы из них ни реализовался, ничего хуже себе представить нельзя. Конечно, это верно для людей и миллионов видов живых существ, которые живут рядом с нами на Земле. Но в четвертом сценарии Судного дня ученым пришлось рассмотреть еще более трагичный сценарий, чем разрушение нашей планеты и гибель всех ее обитателей. Речь идет о вакуумном распаде, не оставляющем никакой надежды на возникновение жизни в огромных областях пространства!

Для ученого середины XVII века вакуум — это то, что получается, если приделать один из только что изобретенных тогда насосов к стеклянному сосуду и напрячь весь свой интеллект, чтобы заставить эту чертову штуку работать. Проявив упорство, естествоиспытатель мог удалить весь воздух и получить по-настоящему пустой сосуд — контейнер, полный абсолютного ничто.

Для современных ученых вакуум далеко не пуст. Он содержит множество невидимых мощных полей и связанных с ними частиц, которые постоянно появляются и умирают. В этих полях запасена энергия, которую называют энергией космического вакуума Вселенной.

Наиболее стабильное состояние Вселенной — такое, в котором она обладает минимумом энергии. Проблема в том, что ученые не знают, находится ли наша Вселенная в самом устойчивом состоянии или нет. Допустим, энергия вакуума не минимальна, тогда при некотором воздействии он может неожиданно приобрести более стабильную конфигурацию с меньшей энергией.

Вы можете наблюдать аналогичный процесс в реальности, не выходя из вашей гостиной. Когда вы гордо устанавливаете фотографию своей улыбающейся тещи (свекрови) на каминной полке, она (фотография) приобретает определенную потенциальную энергию. Гравитация спит и видит, как бы уменьшить эту энергию, сбросив фотографию вниз в камин. Все, что нужно для этого, — случайное дуновение или слабый толчок, и портрет обожаемой родственницы будет выведен из состояния равновесия и слетит с полки.

Если Вселенная находится в таком же шатком положении — а это страшно важное “если”, — энергичный толчок, при стечении определенных обстоятельств, сбросит ее с “космической каминной полки” вниз, в более стабильное состояние. Ученые из Брукхейвенской лаборатории и ЦЕРНа задались вопросом, может ли энергия, выделенная в коллайдере, например, RHIC или LHC, придать Вселенной подобный толчок? Если бы это произошло, последствия были бы чрезвычайно печальные.

Физик из Гарварда Сидни Коулман умел облекать свои мысли в яркие вербальные образы. Это именно он предложил коллегам порвать в клочья Питера Хиггса с его грандиозной идеей бозонов Хиггса на следующий день после того, как тот выступил на семинаре в Институте перспективных исследований в Принстоне в 1966 году. Коулмана очень заинтриговала перспектива существования человечества в метастабильной Вселенной, которая прекрасно функционирует до какого-то момента, но при хороших (скорее плохих) обстоятельствах может упасть в состояние с меньшей энергией.

Коулман представил, что произойдет, если в некотором уголке Вселенной энергия вакуума по той или иной причине внезапно “упадет с камина” — то есть там произойдет переход из состояния, которое только казалось устойчивым, в гораздо более стабильное. Расчеты показали, что возникший пузырь “истинного вакуума” будет расти с поразительной быстротой. Граница между ним и “ложным” вакуумом старой Вселенной будет двигаться со скоростью света!

Энергия вакуума является основой, на которой строятся законы природы. Если бы она вдруг уменьшилась, законы физики мгновенно изменились бы. Не только мы бы погибли, но и все другие живые существа на Земле. Но Коулман обнаружил и кое-что еще более ужасное. Наш старый мир заменит новая, более стабильная версия, и в этом новом мире уже не будет места для жизни.

Содержание своей одиннадцатистраничной статьи147, опубликованной в 1980 году, Коулман кратко сформулировал в безусловно одном из самых поразительных абзацев, когда-либо появлявшихся в научной литературе: “Вероятность того, что мы живем в ложном вакууме, всегда была невеселой темой для размышления. Вакуумный распад явился бы завершающей экологической катастрофой; в новом вакууме возникли бы новые фундаментальные константы; после вакуумного распада не только жизнь в том виде, какой мы знаем, была бы невозможной, но также не существовала бы и знакомая нам химия. Однако ранее мы находили некое утешение в духе стоицизма; кто знает, вдруг в новом вакууме возникнут со временем если не жизнь, как мы ее представляем, то, по крайней мере, некоторые структуры, способные познать удовольствие. Однако в последнее время стало ясно — это абсолютно нереально”.

Через пару лет после публикации сногсшибательной статьи Коулмана Вильчек с коллегой Майклом Тернером попытались выяснить, находится ли наша Вселенная в самом низком энергетическом состоянии. В статье, появившейся в журнале “Nature”, они писали; “...есть небольшая вероятность того, что наш теперешний вакуум находится в метастабильном состоянии, и тем не менее Вселенная долгое время могла предпочесть именно такое подвешенное состояние. В этом случае пузырь “истинного” вакуума может зародиться где-то внутри Вселенной и без предупреждения двинуться наружу со скоростью света”148.

Так как ничто не распространяется быстрее, чем свет, мы не узнаем заранее, что нас ждет космическая катастрофа. “Вы ничего не заметите. Просто исчезнете, — говорит Вильчек. — Мы все превратимся в розовый туман”.

Пусть мы никогда не узнаем, что нас убьет, но трудно подавить в себе болезненный интерес к тому, как это может произойти, и не попытаться представить, что физически случилось бы с нами и со всем вокруг нас. Одна из возможностей заключается в том, что при появлении этого страшного “нового” вакуума сильное взаимодействие, связывающее частицы друг с другом внутри атомных ядер, вдруг станет более короткодействующим — как это случается с W- и Z-бозонами при включении поля Хиггса, и тогда атомы внутри всего сущего спонтанно распадутся на части. Просто рассыплются.

Несомненно, в этой ситуации требовалось хоть какое-то утешение, и оно появилось — в следующем году, в виде заметки Мартина Риса (который позже стал королевским астрономом Британии и президентом Королевского общества) и Пита Хата, физика из Института перспективных исследований в Принстоне. И опять пример космических лучей сослужил добрую службу, избавив человечество от эсхатологических страхов149.

Хат и Рис, подчеркнув, что Вселенная отлично выживала с нынешним вакуумом почти 14 миллиардов лет, сделали вывод: для того чтобы произошел распад вакуума, люди должны сделать что-то более ужасное, чем то, что происходило во Вселенной за все время ее существования.

Самые энергичные столкновения частиц на Земле случаются, когда ионы космических лучей сталкиваются с ионами верхних слоев атмосферы. Авторы подсчитали, что в нашей атмосфере каждую секунду происходит около 100 миллионов столкновений с выделением большей энергии, чем в любом современном коллайдере.

Итак, говорили Хат и Рис, Вселенная не настолько хрупкая, чтобы ее можно было бы уничтожить земными коллайдерами частиц. По крайней мере, теперешними коллайдерами. Когда и если они станут в 100 раз мощнее, вопрос снова будет стоять в повестке дня, но пока мы в безопасности. “Мы можем быть абсолютно уверены, что ускорители частиц в обозримом будущем не будут представлять никакой угрозы для нашего вакуума”, — написали ученые в журнале “Nature”. Фраза вселяет оптимизм, хотя так и представляешь себе протестующих, которые лет через двадцать соберутся у ворот ЦЕРНа и будут размахивать плакатами с нацарапанными на них надписями типа: “Руки прочь от нашего вакуума!”

Но это будет не первым случаем подобных демонстраций. В середине 1990-х годов небольшая группа особо активных граждан сильно обеспокоилась тем, что ученые с помощью включенного после реконструкции коллайдера “Теватрон” “проделают дыру во Вселенной”, и, чтобы этого не случилось, стала пикетировать Фермилаб. Протест тот массовостью не отличался. Лидером демонстрантов был Пол Диксон — психолог из Гавайского университета. Он соорудил большой баннер из простыни и написал на нем, что Фермилаб — “инкубатор для следующей сверхновой”.

Эксперты по безопасности из Брукхейвенской лаборатории и ЦЕРНа и тут использовали аргумент космических лучей, который придумали Хат и Рис, чтобы обосновать неспособность коллайдеров инициировать вакуумный распад. Вопрос безопасности, безусловно, однажды встанет вновь — в будущем, когда будут построены более мощные коллайдеры150.

 Отчет по безопасности Брукхейвенской лаборатории был опубликован в сентябре 1999 года. Отнюдь не предназначенный для широкой публики, он заложил фундамент будущих отношений ученых с общественностью. Его значение, по крайней мере для Марбургера, состояло в том, что он содержал единодушные — и в подавляющем большинстве оптимистичные — выводы четырех ученых, возможно лучших экспертов в мире. Основываясь на этих выводах, Марбургер заверил общественность, что ускоритель RHIC не представляет никакой угрозы для планеты.

Уолтер Вагнер, выразивший в свое время определенные опасения по поводу черных дыр, был одним из тех, кого отчет не успокоил. Он обратился в калифорнийский суд с требованием временного запрета на работу ускорителя RHIC в Брукхейвенской лаборатории. Когда ходатайство было отклонено, Вагнер подал апелляцию. После трех таких исков суд окончательно отклонил его претензии.

Надо сказать, Вагнер — весьма неприятная личность151. Бывший сотрудник службы радиационной безопасности в Сан-Франциско, он частенько бродил по окрестностям, измеряя уровень радиации. Вагнер продирался сквозь кусты, чтобы проверить на радиоактивность черепицу на крышах общественных зданий. Он стучался в чужие двери и, размахивая счетчиком Гейгера, предлагал проверить кафельную плитку в ванных. На научной конференции Вагнер установил свой стенд, предупреждавший об опасном, с его точки зрения, уровне излучения в местной школе. Государственное Министерство здравоохранения посчитало его лозунги чересчур алармистскими и установило свой стенд рядом со стендом Вагнера, противопоставив свои данные вагнеровским.

Через несколько лет после попытки закрыть RHIC через суды Вагнер попытался применить такую же тактику, чтобы сорвать запуск коллайдера LHC в ЦЕРНе.

Вагнер был в числе тех немногих экстремистов, которые благодаря средствам массовой информации приобрели славу ярых противников коллайдеров. Однако следует заметить, что широкая общественность не полностью уверилась в безопасности ускорителей. Ряд опросов общественного мнения выявили обеспокоенность значимого меньшинства общества этой проблемой (правда, опросы такого рода обычно оказываются или нерепрезентативными, или в том или ином отношении ошибочными). Ну а Питер Хиггс конечно же считал, что все идеи уничтожения мира с помощью коллайдеров — сущий вздор.

К сожалению, организовать разумные общественные дебаты по вопросам безопасности коллайдеров (как и безопасности исследований в других передовых областях науки, например синтетической биологии и генетики) очень трудно. Люди, которые понимают их лучше всех, занимаются физикой ускорителей, а потому не могут избежать упреков в отстаивании корпоративных интересов. Парадоксально, но самые горластые оппоненты новой технологии часто настолько плохо информированы, что быстро начинают восприниматься, и часто заслуженно, как городские сумасшедшие. В результате вместо нормальной дискуссии возникает иллюзия диалога. Плохо информированные противники оказывают медвежью услугу людям, относящимся к проблемам безопасности с неподдельным интересом и озабоченностью, и таким образом убивают возможность беспристрастного обсуждения рисков.

Именно СМИ были виновны в создании иллюзии серьезного обсуждения вопросов безопасности коллайдеров, противопоставляя специалистов далеким от науки дилетантам. И среди серьезных ученых нашлась пара объективных критиков отчета по безопасности, составленного в Брукхейвенской лаборатории и ЦЕРНе. Однако мало кто услышал их — их доводы напечатаны лишь на страницах специальных журналов.

Джону Марбургеру было хорошо известно, что некоторые из аргументов, приведенных в докладе по безопасности Брукхейвенской лаборатории, не совсем убедительны. К примеру, тот факт, что Солнце и Луна все еще существуют, несмотря на постоянную бомбардировку космическими лучами в течение миллиардов лет, не имеет существенного значения, если катастрофические для человечества процессы в природе возможны в принципе, хоть и очень маловероятны. И это, возможно, редкая удача, что они еще не произошли.

Другая причина запутанности вопроса о безопасности заключается в том, что оценка риска, полученная Брукхейвенской лабораторией, была теоретическим верхним пределом, а его нельзя отождествлять с вероятностью того, что что-то случится. В Брукхейвенском докладе были использованы аргументы, основанные на физике космических лучей, — чтобы доказать, что шанс создания странглетов на ускорителе RHIC после его запуска в течение каждого года работы машины меньше чем два на миллиард. Поскольку машина, как ожидалось, проработает десять лет, шанс, что она уничтожит Вселенную, увеличивался до одного на 50 миллионов. Но эта цифра является бессмысленной. Она означает, что, если столкновения на RHICe похожи на те, что происходят в природе, шансы машины устроить Армагеддон никогда не превысят два на миллиард в течение года. Эта цифра может быть в триллионы и триллионы раз меньше, а мы интерпретируем ее как оценку риска, а не его верхний предел, и она воспринимается как малый, но реальный шанс того, что катастрофа произойдет.

Отсутствие доказательств как существования странглетов, так и невозможности их образования во Вселенной сделало проблему еще более запутанной. Известно, что странглетов никогда не видели в коллайдере, несмотря на то что ученые скрупулезно проверили все данные в попытках их обнаружить. Их никогда не видели в числе мчащихся сквозь пространство частиц, их не нашли ни на Луне, ни на другой планете. Не существует и строгой теории, утверждающей, что они должны существовать. Но нет и ни одной теории, опровергающей их существование. В подобной ситуации вообще осмысленный расчет риска создания в коллайдере странглетов, а затем и уничтожения ими планеты бессмыслен.

Марбургер сравнивает эту задачу с задачей об оценке риска быть съеденным неуловимым шотландским лох-несским чудовищем при нырянии в озеро Лох-Несс. Никто никогда не видел (в реальности) чудовище, и все, что нам известно из науки, приводит нас к заключению, что монстр не существует, но законы природы не исключают возможность его существования. Несмотря на полное отсутствие фактов (к счастью для туристических агентств высокогорной Шотландии), верящие в чудовище люди продолжают испытывать страх.

Некоторые оппоненты отчета по безопасности поставили под вопрос также предположение о том, что столкновения космических лучей эквивалентны столкновениям в коллайдерах. Хотя природа организует свои собственные столкновения частиц, направляя космические лучи на планеты и облака межзвездной пыли, они не те же самые, что изучают ученые на Земле. Столкновения могут различаться незначительными параметрами, но об этом трудно судить, когда теория, описывающая частицы, возникающие при столкновениях, настолько несовершенна.

Когда ионы космических лучей врезаются в Луну, их скорости близки к скорости света. Если странглеты возникнут в результате таких столкновений, они должны будут на высокой скорости проделать путь через лунную породу к ее ядру, прежде чем у них появится шанс нанести какой-то вред лунной материи. В коллайдере частицы сталкиваются лоб в лоб в вакууме, так что осколки, созданные при столкновении, движутся медленнее и не взаимодействуют с лунном породой после рождения. Может ли странглет, созданный в этих условиях, быть более опасным, чем странглет, созданный на Луне?

В Кембриджском университете физик-теоретик Адриан Кент открыто оспорил предположения, на которых основывались выводы о безопасности коллайдеров152. Эксперты Брукхейвенской лаборатории утверждали, что одних аргументов, основанных на аналогии с космическими лучами, достаточно, чтобы гарантировать безопасность экспериментов RHIC. Кент назвал этот довод “очень некорректным”, эксперты Брукхейвена согласились, пересмотрели свой отчет и убрали его.

Кент утверждал, что, в то время как верхний предел риска — один на 50 миллионов — может показаться низким (это примерно четверть шанса на выигрыш джекпота в лотерее Великобритании), при его расчете необходимо принимать во внимание ценность того, что стоит на кону. Если бы что-то пошло не так, как рассчитывали ученые, это могло бы не только сразу уничтожить все население в мире, насчитывавшее тогда 6,7 миллиарда, — у человечества и всех других живущих на Земле видов была бы отнята навсегда возможность возродиться в будущем!

В среде страховщиков считается, что, если есть вероятность одна на 50 миллионов убить 6,7 миллиарда человек, она может рассматриваться как эквивалент ожидания гибели 134 человек. Цифра получается путем умножения дроби, соответствующей риску, на число жизней, поставленных на карту. Конечно, ни один эксперимент, в котором ожидается такое большое количество смертей, не смог бы получить разрешения правительства. Но эксперименты на RHIC получили добро отчасти в силу того, что начальный анализ безопасности, проделанный в Брукхейвенской лаборатории, был слишком оптимистичным. “Насколько мне известно, в Брукхейвене не стали пытаться получить разрешение на эксперименты с учетом пересмотренных оценок, и, кроме того, существенно измененный вариант анализа рисков не был доведен до сведения СМИ и общественности. На мой взгляд, это неправильно”, — прокомментировал Кент.

Играя роль адвоката дьявола, Кент продолжал искать другие изъяны в рассуждениях ученых, которые они использовали, чтобы убедить всех в безопасности коллайдеров. В частности, он нашел еще один возможный сценарий бедствия, о котором никто не задумывался. Обе комиссии экспертов по безопасности утверждали, что положительно заряженные странглеты безопасны, потому что они будут отталкивать окружающие атомные ядра, а не поглощать их. Но что, если один из них умудрится найти некий способ добраться до Солнца? Оказавшись внутри Солнца, он сможет запустить катастрофический сценарий, который уничтожил бы его.

Кент утверждал, что компоненты детекторов коллайдеров могут оказаться загрязненными положительными странглетами (никто не знает, каким образом). Тогда в переработанном виде они могли бы войти в состав деталей космического корабля, который в один прекрасный день отправится на исследование космоса и в конечном итоге попадет на Солнце. Кроме того, террористы-технофилы могут добраться до каких-нибудь загрязненных материалов и угрожать отправить их в космос, если не выполнят их требований. Кент предположил, что это грозит человечеству Армагеддоном, и предупредил, что “лабораторные материалы, возможно загрязненные положительно заряженными странглетами, представляют собой потенциальную опасность, хотя и небольшую, но о ней нужно все время помнить”. При этом он признает, что любая группа террористов с деньгами и соответствующим знанием о том, как использовать такое оружие, “может реально угрожать и менее экзотической катастрофой”.

Если бы природа провела эксперименты, подобные тем, которые планируется проделать в коллайдерах, теоретические аргументы стали бы весомее. Но даже в этом ученые, не входящие в группы экспертов по безопасности, увидели логические дыры. Действительно, при оценке рисков на основе определенной теории должна приниматься во внимание вероятность того, что эта теория не точна. Если неопределенности в теории достаточно значительны, любая оценка риска на ее основе неправильна. Например, угроза появления черных дыр в ускорителе LHC, как считается, будет минимальной. Обосновывается это тем, что для того, чтобы в современных коллайдерах родилась черная дыра, нужно, чтобы гравитационное поле на микроскопических масштабах вело себя необычным образом. Однако как оно ведет себя на самом деле, пока не ясно. Если все-таки черные дыры образуются, их безвредность основывается на теории Стивена Хокинга, предсказывающей, что они будут излучать тепло и испаряться. Это еще не общепризнанная теория, и детали, конечно, могут измениться.

Перспектива того, что черные дыры могут (с очень малой вероятностью) создать проблему для коллайдера частиц, побудила ученых искать фантастические решения. Если черная дыра и родится, она будет расти очень медленно, что даст исследователям время направить катодно-лучевую трубку на это чудище и накачать ее электронами. По мере заглатывания частиц в черной дыре будет накапливаться отрицательный заряд. Тогда нужно будет изготовить ловушку в виде ящика с отрицательно заряженными металлическими стенками и поймать черную дыру в нее. Стенки будут ее отталкивать, а если создать там вакуум, она будет спокойно парить в воздухе, пока ученые не разберутся, что с ней делать дальше. Одним из вариантов может быть такой: загрузить ящик в ракету и взорвать в космосе. Ученые, придумавшие это решение, признают, что у него могут иметься недостатки...

Когда поднялась шумиха вокруг безопасности RHIC, Франческо Калоджеро предложил самый лучший способ оценки рисков153. Калоджеро — итальянский физик-теоретик, который провел восемь лет в должности генерального секретаря Пагуошских конференций по науке и международным отношениям. Пагуошские конференции — идеальное место для встреч ученых и чиновников из разных стран, где они могут изучать способы разрешения конфликтов и предотвращения эскалации вооружения, причем дискуссии обычно проходят в атмосфере доверия и открытости. В 1995 году Калоджеро принял Нобелевскую премию мира, присужденную совместно Пагуошскому движению и Джозефу Ротблату — физику, родившемуся в Польше и ставшему одним из ведущих сторонников ядерного разоружения.

В 2000 году Калоджеро опубликовал научный доклад, название которого звучит весьма внушительно: “Могут ли лабораторные эксперименты уничтожить планету Земля?” В нем Калоджеро предложил Брукхейвенской лаборатории пригласить две группы ученых: голубая команда занималась бы составлением объективного отчета о безопасности коллайдера, а красная команда, словно адвокат дьявола, всячески пыталась бы доказать, что эксперимент опасен. Две команды должны в конце концов достичь консенсуса и, если возможно, выработать согласованную оценку риска работы ускорителя.

Калоджеро хотелось, чтобы соревнование двух команд заложило бы основы для объективной и открытой критики, к чему, как он понял, его коллеги большой склонности отнюдь не испытывают. Такой вывод он сделал, запросив экспертные оценки безопасности Брукхейвенского коллайдера. Ответы коллег он охарактеризовал следующим образом: “Многие, а в действительности большинство из них, как мне кажется, больше озабочены реакцией СМИ на то, что они или кто-то еще скажет или напишет о безопасности, чем полной научной объективностью приведенных фактов. Их молчаливое согласие с официальной линией руководства граничит с соучастием”.

Ричард Познер — уважаемый американский судья — в своей книге 2004 года “Катастрофа: риск и ответственность” описал недостатки в оценке риска работы ускорителя RHIC. Он поднял вопрос о беспристрастности ученых, призванных судить о безопасности экспериментов, и спрашивал, какую выгоду общество вправе ожидать, допустив определенный уровень риска. Познер призывает адвокатов повысить свою научную грамотность, хотя и предупреждает, что вряд ли многие из них досконально разберутся в квантовой теории и элементарных частицах, а также в сложностях оценки рисков. Познер считает, что решение таких вопросов должно быть отдано в руки членов постоянного “Совета по оценке рисков возникновения катастрофы”, а тот бы давал красный свет проектам, влекущим “неприемлемый для выживания человечества риск”.

Какие уроки мы должны извлечь из этого? История показывает, что всегда находятся некоторые неизвестные сущности, прячущиеся в теориях ученых и грозящие концом света, а шансы случайного возникновения катастрофы почти наверняка точно никто не может оценить. В далеком прошлом эксперимент, в котором пошло что-то не так, влиял только на тех, кто участвовал в нем или находился поблизости, но это давно уже не так. Опасность, исходящая от странглетов и магнитных монополей, уже исключена из рассмотрения, но из физических теорий могут выглянуть и другие опасности. Как обществу решить, стоит ли позволить ученым провести эксперимент, имеющий минимальный риск возникновения общей катастрофы, или нет? Один из аргументов тех, кто хочет запретить коллайдеры, состоит в том, что, поскольку ускорители приносят прямую выгоду только чистой науке, мы и так слишком многое разрешили. Но это близорукий взгляд на вещи. Эксперименты в области физики высоких энергий уже дали человечеству самые разные технологии, и среди них — абсолютно революционные, такие как Всемирная паутина и лечение рака с помощью облучения ионными пучками. Когда ученые добиваются заметного прогресса в чистой науке, за этим часто следуют технологические прорывы. И в этой ситуации лучшее, на что можно надеяться, — это по-настоящему публичная дискуссия, в которой открыто обсуждаются реальные проблемы. Без этого у общества нет никаких шансов принимать обоснованные решения, и по мере развития науки такой подход становится все более актуальным.

Когда Эмиль Конопинский и Эдвард Теллер стали вычислять, может ли атомный взрыв запустить быстро распространяющуюся реакцию синтеза в атмосфере, у них было достаточно знаний о свойствах атомов воздуха, чтобы быть уверенными в полной безопасности. Их выводы утешали. Тогда их расчеты ознаменовали исторический момент: ученые впервые серьезно отнеслись к тому, что в их власти уничтожить все живое. Марбургер вспомнил этот эпизод, когда публикации в “Scientific American” вызвали всплеск волнений по поводу шансов наступления Судного дня при включении коллайдеров. “У всех на уме была аналогия с испытанием “Троицы”, первой атомной бомбы в мире, — сказал он мне. — Я хотел, чтобы Фрэнк Вильчек имел это в виду, когда писал свою статью”. Испытание “Троицы” 16 июля 1945 года в Нью-Мексико было первой демонстрацией силы ядерного оружия.

Сценарии конца света, которые рассматривали ученые в Брукхейвенской лаборатории и ЦЕРНе, могут показаться нелепыми. Представьте себе: вместо построения коллайдера, что сопряжено с некоторым трудно оцениваемым риском уничтожения мира, некий злокозненный властитель заставляет ученых построить машину для уничтожения планеты. Сначала у них возникнут споры о том, как это сделать. В конце концов последний вариант машины потребует пересмотра бюджета. И даже если она будет построена, прежде чем заработает как нужно, потребуется доработка ее конструкции. Уничтожение планеты — далеко не тривиальное дело.

Во время разговора с Фрэнком Вильчеком о сценариях конца света я подумал, не слишком ли много высокомерия в ученых, если они считают себя способными уничтожить планету, пусть даже и случайно. Его ответ был отрезвляющим: “Классическая физика была по-своему замечательна, но она не была “фантастической” в том смысле, в котором фантастична современная физика. В квантовом мире все иначе, чем в обычном. Есть огромное количество энергии, запертое в субатомных структурах вещества, и никто, опираясь на повседневный опыт, и близко не может этого представить. Назовите это высокомерием, но вполне вероятно, что, поняв все еще глубже, мы сумеем делать нечто, похожее на волшебство. На каждом этапе, по мере того как открываются и осмысляются новые явления, мы должны учитывать все возможные последствия. И тут, я думаю, нет никаких пределов, может случиться все, что угодно. Вот почему мы должны быть осторожны и ответственны”.

Суета по поводу сценариев конца света в 1999 году спровоцировала серьезные дебаты относительно роли науки, характера управления рисками и ответственности ученых перед обществом. Но уже ничто не могло отвлечь и остановить физиков в их стремлении к истине. В Фермилабе близились к завершению работы по серьезному обновлению “Теватрона”, затеянного для улучшения его технических характеристик. После переделки машина должна была приступить к своей первой серьезной охоте на бозоны Хиггса. А в ЦЕРНе коллайдеру LEP оставался всего лишь год работы до закрытия, после чего “Теватрон” становился лидером в гонке за неуловимой частицей.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК