Теория гравитации Ньютона

Теория гравитации Ньютона

Теперь обратимся непосредственно к истории создания теории гравитации. Оставляя в стороне вопрос о природе тяготения, отметим, что с «практической» точки зрения (для вычисления движений небесных тел) было важно знать, как сила гравитационного взаимодействия между телами зависит от расстояния между ними.

В 1684 году английский астроном и физик Эдмунд Галлей (1656–1742), занимающий должность Королевского астронома, после долгих размышлений пришел к убеждению, что сила притяжения изменяется обратно пропорционально квадрату расстояния. Это предположение казалось вполне разумным. Действительно, если некое воздействие распространяется от источника симметрично по всем направлениям, то площадь, «охватываемая» этим воздействием, возрастает как квадрат расстояния от центра. Поэтому вполне вероятно, что эффективность этой силы должна уменьшаться пропорционально этой площади, то есть должна быть обратно пропорциональной квадрату расстояния. Однако Галлей и его коллеги не смогли доказать математически, что из такого закона притяжения следует вывод о движении планет по эллиптическим орбитам.

В августе того же 1684 года Галлей отправился в Кембридж за консультациями к профессору математики Исааку Ньютону. Вопрос Галлея звучал так: «По какой траектории должна двигаться планета под действием силы, изменяющейся обратно пропорционально квадрату расстояния от Солнца?» К изумлению Галлея, Ньютон сразу ответил, что такой траекторией является эллипс. Дело в том, что изучать проблемы тяготения Ньютон начал еще в 1665 году, и уже получил решение. Свои расчеты он отослал Галлею через несколько месяцев и с его одобрения опубликовал результаты в книге «Математические начала натуральной философии». Повторимся, среди фундаментальных научных трудов в истории мировой науки эта книга – одна из самых значительных.

Встреча с Галлеем возродила у Ньютона интерес к проблемам тяготения и движения планет. Вернемся к легенде о падающем яблоке и обсудим ее. Если этого не было на самом деле, то такая легенда не могла не возникнуть. По сути, задается вопрос: не заставляет ли падать яблоко та же самая сила, что удерживает Луну на ее орбите вокруг Земли? Легенда олицетворяет прорыв в научном понимании тяготения, связывает «низкое» представление о тяготении, проявления которого мы воспринимаем каждый день, и «высокое», благодаря которому движутся светила, управляется вся Вселенная.

Ньютон установил, что тело, равномерно движущееся по окружности, фактически движется с ускорением (центростремительным), вызванным постоянной силой, направленной к центру окружности: aцс = v2/R. Третий закон Кеплера устанавливает связь между периодами обращения планет вокруг Солнца и их расстояниями от него. Применяя это соотношение к движению по окружности, Ньютон легко нашел скорость линейного движения: v ~ 1/R1/2.

Тогда сила, соответствующая центростремительному ускорению и удерживающая планеты на орбитах (пусть пока круговых), должна иметь вид: F ~ 1/R2, то есть должна быть обратно пропорциональной квадрату расстояния от планеты до Солнца. Тогда Ньютон решил выяснить, не управляет ли одна и та же сила движением Луны на орбите и падением яблока на поверхности Земли.

Интуитивно Ньютон понял, что существенно расстояние от центра Земли, а не от ее поверхности, хотя это предположение он сумел доказать значительно позднее. Зная период обращения Луны вокруг Земли, было нетрудно подсчитать с помощью третьего закона Кеплера, что центростремительное ускорение Луны по направлению к Земле, как показано выше aцс ~ 1/R2. Ускорение падения тел вблизи поверхности Земли было хорошо известно из опытов. А поскольку Луна находится в 60 раз дальше от центра Земли, чем яблоко на ее поверхности, то ускорение для яблока должно быть в 60 ? 60 = 3600 раз больше. Число 60 очень удачно для сравнения в данном случае. Используя законы ускоренного движения, легко подсчитать, что за одну секунду яблоко должно пролетать к центру Земли расстояние, которое Луна проходит только за одну минуту. Проделав расчеты, Ньютон обнаружил, что они согласуются с наблюдениями с точностью ~ 1 % и пришел к твердому убеждению, что движением планет, Луны и всех тел, падающих на землю, действительно, управляет одна и та же сила – тяготение.

Успехи Ньютона как физика были бы невозможны, если бы он не разработал необходимый математический аппарат, о чем мы уже говорили. Это фактически была совершенно новая область математики – математический анализ. С его помощью Ньютон показал, что эллиптическая форма орбит обусловлена движением под действием силы, направленной к одному из фокусов эллипса, величина которой обратно пропорциональна квадрату расстояния от него. Однако только в 1685 году с помощью созданного им аппарата математического анализа Ньютон сумел доказать, что гравитационное притяжение Земли можно рассматривать так, как если бы вся ее масса была сосредоточена в центре. Этот факт был принципиальным, он позволил Ньютону обосновать использованный ранее способ сравнения ускорений Луны и яблока.

С помощью своих законов механики Ньютон убедительно доказал, что нет деления на тела, которые притягивают, и тела, которые притягиваются. Все тяготеющие тела взаимопритягиваются, то есть законы гравитации имеют универсальный смысл.

Повторим коротко его вывод. У поверхности Земли все тела падают с одинаковым ускорением g независимо от их массы (веса), а сила, действующая на тело на поверхности Земли, пропорциональна его массе (весу), поэтому F = mg. Далее, согласно третьему закону механики, если на тело массой m со стороны другого тела массой M действует некоторая сила, то тело массой m действует на тело массой M точно с такой же, но противоположно направленной силой. Скажем, не только Земля притягивает Луну, но и Луна притягивает Землю. Следовательно, сила взаимного притяжения двух тел должна быть пропорциональна каждой из масс. То, что эта сила обратно пропорциональна квадрату расстояния между телами было уже установлено. Поэтому сила взаимного притяжения двух масс m и M, удаленных на расстояние r друг от друга, определяется выражением:

которое и является формулировкой закона всемирного тяготения; здесь G – это коэффициент пропорциональности, называемый постоянной всемирного тяготения. Величина G показывает, насколько сильно гравитационное взаимодействие. Это одна из фундаментальных мировых констант, чисел, значения которых определяют поведение и Вселенной в целом, и отдельных ее частей.

Понятие «масса», входящее во второй закон Ньютона, имеет смысл инертной массы – меры сопротивления тела любому изменению состояния его движения. Из второго закона Ньютона следует, что если к двум телам с разными массами приложить одинаковую силу, то менее массивное тело приобретает большее ускорение, чем тело с большей массой. Но понятие «массы» в законе всемирного тяготения имеет другой смысл – это «тяготеющая масса», или мера того, что условно можно назвать «количеством тяготения», присущим данному телу.

Нет логических оснований считать эти два вида массы тождественными. В конце концов, тяготеющую массу можно рассматривать как гравитационный эквивалент электрического заряда; два тела с одинаковой инертной массой могут иметь совершенно различные электрические заряды и, следовательно, приобретать разные ускорения под действием одного и того же электрического поля. В противоположность этому, в гравитационном поле Земли тела как с разными, так и с равными инертными массами всегда падают с одним и тем же ускорением. А это может быть только в том случае, если отношение тяготеющей массы к инертной для всех тел одинаково.

Ньютон провел серию экспериментов, чтобы выяснить, не оказывается ли это отношение различным для разных тел. Такого различия он не обнаружил, не обнаружено оно и до сих пор. Поскольку эти два вида массы всегда находятся в одной и той же пропорции друг к другу, единицу измерения для них подобрали так, чтобы их отношение оказалось равным единице. Это выражается в том, что формула для силы притяжения на поверхности Земли имеет вид второго закона: F = mg.

Факт равенства инертной и тяготеющей масс известен как принцип эквивалентности. Ниже мы увидим, что этот принцип служит одним из ключевых положений общей теории относительности Эйнштейна.

Значение закона всемирного тяготения нельзя переоценить. Ньютон показал, что тело совершает движение по какой-либо кривой конического сечения (окружности, эллипсу, параболе или гиперболе) в том случае, если на него действует сила, обратно пропорциональная квадрату расстояния и направленная к фокусу этой кривой. И наоборот, движение тела под действием такой силы подчиняется законам Кеплера. Ньютон показал также, что действием такой универсальной силы можно объяснить движение Луны и планет, ускорение падающих тел, поведение спутников Юпитера и океанские приливы.

Были объяснены и предсказаны и другие явления. Ньютон предсказал, что в результате вращения вокруг своей оси Земля должна быть слегка выпуклой вблизи экватора и сплюснутой у полюсов. Он объяснил, как это отклонение формы Земли от идеальной сферы приводит к прецессии – явлению, открытому Гиппархом почти 2000 лет назад. В результате прецессии – медленного поворота земной оси – полюс небесной сферы описывает на небе окружность. Если бы Земля была идеальным шаром, то этого бы не наблюдалось, но вследствие экваториальной выпуклости Земли и наклона ее оси гравитационное воздействие на нее со стороны Солнца и Луны заставляет земную ось поворачиваться, описывая коническую поверхность. Точно так же вращается ось волчка, если при его запуске отклонить ось от вертикального направления, здесь внешней силой, вызывающей прецессию, является сила притяжения Земли.

Галлей, анализируя данные о наблюдениях комет и основываясь на законах Ньютона, сделал вывод, что часть из этих наблюдений относится к одной и той же комете и предсказал ее следующее появление. Когда предсказание оправдалось, комету назвали его именем. Комета Галлея, единственная из короткопериодических комет (орбитальный период около 76 лет), доступная для наблюдения невооруженным глазом. Последний раз она появилась вблизи Солнца и Земли, согласно все тем же расчетам по формулам Ньютона, в марте 1986 года. Тогда комету Галлея наблюдали не только многочисленные любители астрономии и профессиональные ученые, но и пять международных космических аппаратов.

С открытием закона всемирного тяготения стало возможным изучение влияния планет друг на друга, вызванного их взаимным притяжением. Так, исследуя возмущения в движении Урана, удалось точно рассчитать орбиту неизвестной планеты за Ураном, которая эти возмущения вызывала. Позднее ее обнаружили точно в расчетном месте и назвали Нептуном.

В 1803 году английский астроном и оптик Вильям Гершель (1738–1822) опубликовал данные своих наблюдений, из которых следовало, что многие звезды, видимые как точки, на самом деле состоят из пары звезд, медленно обращающихся одна вокруг другой под воздействием взаимного притяжения; такие системы получили название двойных звезд. Последующие наблюдения показали, что движение двойных звезд подчиняется законам Кеплера и закону всемирного тяготения Ньютона. В 1842 году известный немецкий астроном Фридрих Бессель (1784–1846) на основе закона Ньютона предсказал существование невидимого спутника у звезды Сириус. Спутник был открыт через 10 лет!

Уже к концу первой половины XIX века было установлено, что закон всемирного тяготения Ньютона в наблюдаемой Вселенной выполняется повсеместно.

Данный текст является ознакомительным фрагментом.



Поделитесь на страничке

Похожие главы из других книг:

2. Законы Ньютона и динамика материальной точки

Из книги автора

2. Законы Ньютона и динамика материальной точки Приняв за основу возможность локализации физических объектов в пространстве и во времени, классическая механика начинает изучение законов движения с наиболее простого случая: с изучения законов движения материальной


Третий закон Ньютона

Из книги автора

Третий закон Ньютона Ничто не может быть проще той мысли, которая положена в основу этого проекта — двигаться в пустых пространствах без всякой опоры. На первых же уроках физики мы узнаем закон „действия и противодействия" или „третий закон Ньютона": сила действующая


Критика механики Ньютона и геометрии Евклида

Из книги автора

Критика механики Ньютона и геометрии Евклида Электродинамика движущихся сред в теории электронов вела ко многим радикальным выводам, прежде всего к крушению представления о неизменных твердых частичках. Твердых тел и неизменных частиц в природе нет, форма и размеры тел


Механика Ньютона

Из книги автора

Механика Ньютона Теория тяготения Ньютона без использования его законов механики не была бы создана. Опуская детали, которые можно найти и в школьном учебнике физики, приведем эти три основных закона в окончательном виде. Без всякого сомнения, они имеют фундаментальное


Корпускулярная теория гравитации

Из книги автора

Корпускулярная теория гравитации Теория гравитации Ньютона завоевывала все больше сторонников. В законе обратных квадратов мало кто сомневался. Шли дискуссии о природе гравитации. Поскольку механизм передачи гравитационного взаимодействия с помощью частиц


Глава 4 От механики Ньютона до электродинамики Максвелла

Из книги автора

Глава 4 От механики Ньютона до электродинамики Максвелла Мне не стоило большого труда отыскание того, с чего следует начинать, так как я уже знал, что начинать надо с самого простого и доступного пониманию… Рене Декарт «Рассуждении о методе» Сейчас нам придется


Теория гравитации Хоржавы

Из книги автора

Теория гравитации Хоржавы Эта теория является одним из вариантов векторно-тензорных теорий гравитации и, пожалуй, самая популярная на настоящий момент. Именно поэтому мы рассказываем о ней. Теория была предложена в 2009 году американским теоретиком-«струнником» чешского


Закон Ньютона

Из книги автора

Закон Ньютона Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку… Фольклор Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно


Системы мира (от древних до Ньютона)

Из книги автора

Системы мира (от древних до Ньютона) „Наука потому и называется наукой, что она не признает фетишей, не боится поднять руку на отживающее, старое, и чутко прислушивается к голосу опыта, практики. Если бы дело обстояло иначе, у нас не было бы вообще науки, не было скажем


Законы Ньютона

Из книги автора

Законы Ньютона К числу выдающихся научных достижений Ньютона относится высказанное им смелое предположение, по которому все материальные тела, кроме таких наглядных, очевидных свойств, как твердость, упругость, вес и т. д., имеют еще одно чрезвычайно важное свойство:


Великая революция Ньютона в физике

Из книги автора

Великая революция Ньютона в физике Позднее, в 1679 г., Ньютон продолжил свои исследования тел, подверженных действию гравитационных сил, и полностью решил эту проблему. Фактически интуитивные предположение сделанные им в 1666 г., не были полностью разработаны, поскольку он не