Детектирование гравитационных волн

We use cookies. Read the Privacy and Cookie Policy

Детектирование гравитационных волн

Я сразу узнаю удачу, едва она появится…

Жюльетта Бенцони «Марианна в огненном венке»

Из сказанного выше об астрофизических источниках можно сделать вывод, что безразмерные амплитуды гравитационных волн, которые мы имеем шанс зарегистрировать на Земле (или в окрестности Земли), h ~ 10–21. Может быть «случайно» амплитуда окажется и больше, но ориентироваться нужно, скорее, на еще меньшую. Напомним, что h – это та характеристика, которая определяет изменение в измерении физической (реальной) длины: ?l/l ? h/2. Так вот, если такая гравитационная волна пройдет, то метровый стержень изменит свою длину всего на ?l ? 10–19 см. Для сравнения – порядок размера атомов 10–8 см.

Принцип обнаружения гравитационных волн основан на физическом воздействии на пробные тела. Есть два вида детекторов: твердотельные антенны и лазерные интерферометры. При прохождении гравитационной волны рабочий элемент детекторов первого типа должен деформироваться, а в детекторах второго типа должно изменяться взаимное положения свободных масс (зеркал).

Твердотельные детекторы стали создаваться с середины 1960-х годов. Пионером этих разработок по праву можно считать американского физика Джозефа Вебера (1919–2000). Вебер прожил яркую неординарную жизнь. В 1940 году закончил Военно-морскую академию США, активно участвовал во второй мировой войне на различных кораблях. На службе изучал радиоэлектронику, в 1948 году ушел в отставку и стал профессором по инженерии в Мэрилендском университете в Колледж-Парке. Но приняли его на условии, что он быстро защитит диссертацию. Так и случилось, в 1951 году Вебер защитил диссертацию «Микроволновые методы в химической кинетике». Во время этой работы была выдвинута идея о возможности получения когерентного стимулированного микроволнового излучения (мазера). Позднее эти идеи разрабатывались Николаем Басовым (1922–2001) и Александром Прохоровым (1916–2002) и американским физиком Чарльзом Таунсом. Они построили первые действующие модели мазеров и лазеров и получили Нобелевскую премию по физике 1964 года.

В 1950-х Вебер заинтересовался ОТО. В то время под сомнением было само существование гравитационных волн, которое, в основном, развеялось к 1960-м годам. Вебер построил первый тип гравитационных детекторов – резонансные антенны. Это аллюминиевые цилиндры массой около тонны; они могут колебаться, в основном, в продольном направлении, при этом деформации максимальны на торцах. Уже с конца 1960-х годов Вебер начал публиковать статьи, в которых утверждал, что обнаружил гравитационные волны. Это вызвало сенсацию, научные группы по всему миру начали строить аналогичные детекторы. Но никто не смог подтвердить эти результаты.

Наконец, утверждения Вебера были опровергнуты практически всеми другими исследователями. Вебер, однако, продолжал настаивать. Противостояние завершилось серией писем, которыми стороны обменялись в конце 1970-х. Оппонентами утверждалось, что сообщения Вебера выглядят «безумными, потому что вся энергия Вселенной должна была бы полностью перейти в гравитационное излучение примерно за 50 миллионов лет, если бы действительно детектировалось то, что детектирует Джо Вебер». Хотя утверждения Вебера о детектировании гравитационных волн не соответствовали действительности, он признается отцом направления гравитационно-волновой астрономии. В его честь названа премия в области астрономического инструментария.

Несмотря на отсутствие результата, построение и конструирование резонансных детекторов продолжается усилиями ведущих научных школ. В России их разработкой занимается группа под руководством профессора МГУ Владимира Брагинского. Его устройства также представляют собой цилиндры.

Обсудим развитие программы твердотельных антенн. Их главной особенностью является наличие резонансной частоты. Если в спектре гравитационной волны есть частоты, близкие к резонансной частоте антенны, то возбуждаемые в цилиндре акустические колебания усиливаются на этих частотах. Наиболее подходящими для изготовления цилиндров оказываются твердые материалы: алюминий, сапфир, ниобий. Цилиндры из этих материалов обладают наибольшей добротностью или «временем звона». Чем больше время затухания колебаний, тем выше чувствительность антенны, так как резонансное детектирование дает возможность накапливать сигнал.

Современные цилиндрические антенны имеют массу до нескольких тонн. Они хорошо изолированы от внешних воздействий и охлаждены до очень низких температур – около 10 мК. Понижение температуры не только снижает шумы, но и увеличивает добротность. Резонансное детектирование охватывает узкую полосу частот – от 100 Гц до 1 кГц. Полоса каждого детектора до недавнего времени была меньше 1 Гц, сейчас ее удается расширить до 10–20 Гц. Чувствительность у современных твердотельных антенн такова, что она дает возможность регистрировать сигнал с амплитудой 10–22 за время 1 с, или с амплитудой 19–23 за 100 с.

В настоящее время в Европе ведутся теоретические разработки новых моделей твердотельных детекторов. Предполагается, что рабочее тело будет представлять собой шар массой до 30 т, охлажденный до температур единиц мК. У такой антенны чувствительность возрастает на порядок по сравнению с действующими. Большим преимуществом является «всенаправленность» (чего нет у цилиндров).

Но пока гравитационных волн резонансными антеннами не зафиксировано. Несмотря на это, они уже давно приносят ощутимую пользу: с высокой точностью фиксируют сейсмический шум, что очень важно для геофизиков.

Интерферометры представляют собой двухплечевые интерферометры Майкельсона. Их мы уже обсуждали, когда говорили об опытах по обнаружению эфира, рис. 4.4. Можно сказать, что они возродились для решения другой задачи и на более совершенном техническом уровне. Зеркала, отражающие свет, теперь играют и роль свободных масс. Напротив каждого зеркала устанавливается еще по зеркалу, чтобы получить многократное отражение и тем самым увеличить эффективную длину плеч интерферометра. Все зеркала подвешиваются на кварцевых нитях, чтобы демпфировать возможные внешние шумы земного и техногенного происхождения. Источником излучения является мощный лазер непрерывного действия. Гравитационная волна с частотой большей, чем маятниковая частота подвешенных зеркал – это около 1 Гц – должна смещать зеркала относительно друг друга. Это приведет к изменению в разнице длин плеч интерферометра ?l. Измеряемый на фотодетекторе выходной сигнал (если он есть) прямо пропорционален ?l. Из уже неоднократно упомянутой формулы ?l/l ? h/2 ясно, что чем больше плечи, тем более слабый сигнал можно зарегистрировать. Но удлинять бесконечно плечи интерферометра нельзя из-за того, что это трубы с высоким уровнем вакуума. В современных интерферометрах они уже имеют длину несколько километров. Вспомним также, что гравитационная волна – это поперечная тензорная волна, и она действует на пробные частицы как на рис. 10.2. Тогда ясно, почему у интерферометра два плеча, а не одно. Действительно, в случае одного плеча, если волна распространяется вдоль него, то эффекта просто не будет. В случае двух ортогональных плеч эффект будет всегда, а если волна ортогональна им обоим, то эффект удваивается. Наконец, скажем, что принцип использования пары свободных масс – зеркал и лазерного интерферометра – был предложен Владиславом Пустовойтом и Михаилом Герценштейном в 1962 году.

Поиски гравитационных волн ведутся в очень широком диапазоне частот – от 10–16 до 108 Гц, их длина волны от размера горизонта Вселенной до нескольких метров. То есть частотный диапазон поисков перекрывает более чем 20 порядков. Это важно, поскольку покрываются сигналы от большинства возможных источников. Хорошая чувствительность уже достигнута в интервале частот от 10 до 104 Гц, или на длинах волн от 30 тыс. км до 30 км. На этот диапазон рассчитаны наземные проекты LIGO и VIRGO. Для детектирования гравитационного излучения более низких частот – от 0.1 до 0.0001 Гц (это длины волн порядка расстояния от Земли до Солнца) готовится проект LISA – лазерная космическая антенна. К сожалению, он отложен на неопределенное время, об этом ниже.

Сначала обсудим наземные проекты. Проект LIGO (Laser Interferometer Gravitational wave Observatory) – лазерная интерферометрическая гравитационно-волновая обсерватория – это первоначально национальный проект США. VIRGO – название скопления галактик в созвездии Девы. Этот проект изначально был итало-французский. Фактически проект LIGO/VIRGO включает в себя сеть антенн: две антенны, собственно LIGO, – одна в Хэнфорде, другая в Ливингстоне (США) и антенну VIRGO недалеко от Пизы (Италия). К этой же сети относят меньшие по размерам (и, соответственно, по ожидаемой чувствительности) антенну в Японии (ТАМА) и в северной части Германии (GEO-600). Длина плеч американских инструментов – 4,5 км, итальянского – 4 км, детектора в Германии – 600 м, детектора в Японии – 300 м. Можно сказать, что такая сеть представляет собой единый гравитационно-волновой телескоп. Необходимо использовать именно всю информацию, которая регистрируется этими антеннами, использовать корреляцию между ними, чтобы получить максимум сведений о свойствах гравитационных волн и их источников.

Со временем проекты приобрели международный характер. Ответственность за разработку конструкций и операции на интерферометрах лежит на Калифорнийском технологическом институте. Но существует и международное научное сообщество, которое формулирует задачи, проводит исследовательские работы. В нем участвуют 250 ученых и инженеров из 25 институтов. Большую роль в этом сообществе играют профессор Брагинский и его коллеги из Московского государственного университета. Проблемы, которыми занимается группа из МГУ – это подвес зеркал и тепловые флуктуации, квантовые ограничения и квантовые невозмущающие измерения. Все это связано с наличием избыточных шумов, от которых нужно избавляться, чтобы повысить чувствительность, а это и есть основная задача для физиков, пытающихся зарегистрировать сигнал.

На настоящий момент проект LIGO достиг своей проектной чувствительности – примерно 10–21 на частоте около 100 Гц. Это соответствует сигналу от двух сталкивающихся черных дыр с кинетической энергией порядка М?c2 (М? – масса Солнца) и расстоянием от наземной антенны до места столкновения 30 Мпк (100 млн световых лет). Сигнала не было зафиксировано. Но вспомним, что прогноз на частоту таких событий в одной галактике крайне пессимистичен – одно событие в миллион лет, а грубая оценка показывает, что наблюдается несколько тысяч галактик.

Однако существующий проект LIGO находится в стадии существенного технического усовершенствования, названного Advanced LIGO («продвинутый» LIGO). Его чувствительность должна быть до 10 раз выше существующей. В результате новая модификация LIGO даст возможность «чувствовать» источники гравитационных волн на расстояниях в 10 раз больших, т. е. в объеме Вселенной в 1000 раз большем, чем это позволяют современные интерферометры LIGO. Число наблюдаемых галактик должно по всем оценкам превысить миллион! Вспомним, что частота слияния компактных звезд или черных дыр оценивается в одно событие в миллион лет на галактику. На этом основании многие ученые высказывают мнение, что сигнал должен быть зарегистрированы в течение года после запуска Advanced LIGO, запланированного на 2014 год.

Как детектировать сигнал от локализованных источников, более или менее ясно. Особый подход требуется для детектирования реликтового гравитационно-волнового фона, который представляет собой стохастическое излучение. Он сводится к известной задаче обнаружения «одного шума на фоне другого шума», которая имеет решение при отличии их законов распределения. Но, как предполагается, и реликтовый гравитационный фон, и собственный шум гравитационной антенны имеют одинаковый (!) гауссовый закон распределения. Поэтому остается единственная возможность – измерять взаимную функцию соответствия выходных сигналов двух совершенно одинаковых гравитационных детекторов.

Приходящий из космоса «сигнальный шум» для обеих антенн будет одинаковым по всем параметрам. Поэтому он должен оставаться на выходе и накапливаться со временем. А собственные шумы антенн, наоборот, независимы, так что их взаимная корреляция должна обнулить. Расчеты показывают, что чувствительности антенн должно хватить, чтобы зарегистрировать вариации метрического фона ~ 10–24 за время наблюдения равное одному году. Но это при условии, что два приемника находятся в одном месте (для полной тождественности «сигнальных шумов»). На практике все антенны, наоборот, разнесены. Этого требует стратегия «алгоритма совпадений», для детектирования «разовых» событий. Самое правильное решение этой проблемы – строительство двух совершенно одинаковых детекторов в одном месте. Это уже сделано на интерферометрической антенне Хэнфорда. Там в одной вакуумной трубе параллельно смонтированы два интерферометра с плечами в 2 и 4 км. Так что, наблюдения активно проводятся.

Условно можно сказать, что каждая антенна работает более эффективно на длине волны порядка своего собственного размера. Если сливаются две нейтронные звезды, то и характерная длина волны основного всплеска будет соответствовать «размерам» этой катастрофы, то есть порядка 20 км. Значит и детектирование будет более эффективным, если размеры антенны будут километровыми. Таковыми и являются наземные антенны. Но если цель детектировать реликтовые гравитационные волны или всплески от сливающихся сверхмассивных черных дыр при столкновении ядер галактик, то они имеют размер порядка астрономической единицы и более. Поэтому будет лучше, если детекторы будут как можно больше.

Ясно, чтобы построить детекторы, эффективные для регистрации длинноволновых сигналов (низкочастотных), необходимо их вынести на орбиту. Именно с этим связано проектирование космического интерферометра LISA (Laser Interferometer Space Antenna) – лазерно-интерферометрическая антенна в космосе. Это совместный проект Европейского космического агентства (ESA) и Национального управления по аэронавтике и исследованию космического пространства США (NASA). Схема проекта изображена на рис. 10.5. Роль свободных масс играют 6 зеркал, расположенных на трех спутниках, находящихся на специальных орбитах вокруг Земли. Расстояние между спутниками – 5 млн км. Расчетная частота – 10-4 Гц.

Однако этот проект преследуют неудачи в смысле поддержки. В 2011 году NASA из-за финансовых проблем вышла из проекта LISA, который в результате лишился носителей. Европа имеет свои носители, но они слишком дорогие. Была идея использовать в проекте два российских «Союза». Из-за этого пришлось проект переделать, причем удалось сохранить основные технические характеристики и не превысить разумный бюджет. Измененный проект получил название NGO – New Gravitational wave Observatory. Однако недавно в ESA был конкурс очень дорогих проектов, из трех выбирали один. К сожалению, проект NGO отвергли.

Рис. 10.5. Схема проекта LISA

Проектная чувствительность LISA/NGO уверенно перекрывает сигнал от двойных звезд в нашей Галактике. В отличие от слияния компактных звезд, или от вспышек сверхновых, которые происходят «одноразово» и редко (на эти события в основном нацелен проект Advanced LIGO), двойные звезды излучают непрерывно, сигнал должен быть всегда. Также, чувствительность LISA заметно перекрывает предполагаемый сигнал от процессов, связанных со свермассивными черными дырами, а частота этих событий – 50 раз в год! Сравните: всего 1 раз в 30 лет происходит вспышка сверхновой в среднем в каждой галактике. Поэтому будет очень обидно, если проект LISA/NGO отложат надолго.

Но что делать, если частота еще меньше, чем 10–4 Гц, то есть недоступна даже для LISA? Предложение по этому поводу принадлежит космологу из ГАИШ Михаилу Сажину. Трудность поиска гравитационных волн в низкочастотных областях от 10–4 Гц до 10–8 Гц заключается в том, что необходимо иметь две «пробные частицы». Для таких волн их период порядка 3 лет, тогда и пробные частицы должны находиться на расстоянии трех световых лет! В качестве таких детекторов можно использовать астрономические объекты, например пульсары, у которых чрезвычайно стабильный период пульсаций. Их электромагнитные импульсы, прежде чем попасть в земные радиотелескопы, проходят гигантские расстояния, вплоть до нескольких тысяч световых лет. Значит, два импульса одного пульсара можно считать «пробными частицами», которые пригодны для детектирования долгопериодических гравитационных волн.

Действительно, действие гравитационных волн на пути импульсов приводит к «растяжению» и «сжатию» расстояний между ними. Радиоастрономы будут фиксировать изменение времени прихода импульсов по сравнению со стандартным. Гравитационная волна с амплитудой 10–15 приводит к смещению импульсов, отстоящих друг от друга на расстоянии 3 года, на добавочное время примерно в 100 наносекунд. Но заметить это смещение пока невозможно – не хватает точности земных часов. Чтобы зарегистрировать такие тонкие эффекты, необходимо построить новую шкалу времени, основанную на миллисекундных пульсарах. Именно такие пульсары должны стать стандартными часами – на длительных промежутках времени их точность выше точности земных часов.

Данный текст является ознакомительным фрагментом.