ЦЕПНАЯ РЕАКЦИЯ В КОТЛЕ

We use cookies. Read the Privacy and Cookie Policy

ЦЕПНАЯ РЕАКЦИЯ В КОТЛЕ

8.3. В главе I и других предыдущих главах мы дали краткое описание процесса деления, работы котла и химического отделения. Прежде, чем перейти к описанию самих установок для получения плутония, мы рассмотрим эти вопросы с несколько иной точки зрения.

8.4. Работа котла зависит от прохождения нейтронов сквозь вещество и характера столкновений нейтронов с встречающимися на их пути ядрами. Важнейшими типами столкновений являются следующие:

I. Столкновения, при которых нейтроны рассеиваются и теряют значительные количества энергии: (a) неупругие столкновения быстрых нейтронов с ядрами урана; (b) упругие столкновения быстрых нейтронов или нейтронов средних скоростей с легкими ядрами вещества замедлителя; в результате этих столкновений энергия нейтронов уменьшается до весьма малых (так называемых тепловых) значений. II. Столкновения, при которых нейтроны поглощаются: (а) столкновения, которые приводят к делению ядер и дают продукты деления и добавочные нейтроны; (b) столкновения, которые приводят к образованию новых ядер, испытывающих затем радиоактивный распад (например 92U239, превращающийся в 94Pu239).

8.5. Только столкновения второго типа требуют дальнейшего рассмотрения. Из столкновений типа II(а), происходящих в котле, наиболее важными являются столкновения нейтронов с U-235, но нужно также учитывать деление U-238 быстрыми нейтронами и деление тепловыми нейтронами Pu?239. Столкновения типа II(b) это, главным образом, столкновения между нейтронами и U-238. Они случаются с нейтронами любых энергий, но наиболее вероятны для нейтронов, энергии которых лежат в «резонансной» области, расположенной несколько выше тепловых энергий. Ход ядерных реакций при столкновениях типа II(b) может быть представлен следующим образом:

+ ?-лучи

(23 минуты)

+ ?-лучи (2,3 дня)

8.6. Все иные процессы поглощения, не сопровождаемые делением, важны, главным образом, из-за потерь нейтронов; они происходят в замедлителе, в U-235, в охлаждающей жидкости, в имеющихся вначале примесях, в продуктах деления и даже в самом плутонии.

8.7. Так как целью цепной реакции является производство плутония, казалось, было бы желательным, чтобы весь излишек нейтронов был поглощен в U-238, и осталось бы только такое количество нейтронов, которого как раз достаточно, чтобы вызывать деление и, таким образом, поддерживать цепную реакцию. В действительности же тенденция нейтронов к поглощению преобладающим изотопом U-238 настолько велика, сравнительно с тенденцией вызывать деление в 140 раз более редкого U-235, что для получения цепной реакции главные усилия при проектировании должны были быть направлены на создание благоприятных условий для деления (путем применения замедлителя, подходящей решетки, материалов высокой чистоты и пр.).

ИСТОРИЯ ОДНОГО ПОКОЛЕНИЯ НЕЙТРОНОВ

См. рис. 4 на стр. 44.

8.8. Все котлы, сконструированные Металлургической лабораторией или при ее содействии, содержали в себе четыре вида материалов: металлический уран, замедлитель, охлаждающее вещество и вспомогательные материалы трубки, защитные оболочки урана, стержни управления, примеси и пр. Начало реакции во всех котлах связано с блуждающими нейтронами, возникающими в результате спонтанного деления или под действием космических лучей.

8.9. Предположим, что котел может начать действовать при одновременном освобождении (в металлическом уране) № быстрых нейтронов. Большая часть этих частик первоначально обладает энергиями, превышающими порог деления U-238. Однако, в силу того, что нейтроны испытывают неупругие столкновения с ураном и упругие столкновения с замедлителем, их энергия падает с течением времени ниже указанного порога. В частности, в котле с графитовым замедлителем нейтрон, вылетевший из урана в графит (средняя длина пробега в графите 2,5 см), испытает в среднем около 200 упругих столкновений прежде, чем перейдет из графита обратно в уран. Так как при каждом таком столкновении нейтрон теряет, в среднем, около 1/6 своей энергии, то нейтрон с начальной энергией в 1 MeV уменьшит свею энергию до тепловой (обычно принимаемой в 0,025 eV) значительно раньше, чем пройдет через графит. Конечно, имеется много нейтронов, поведение которых отступает от этого среднего, и быстрые нейтроны смогут все же вызвать некоторое число делений, в результате которых число наличных нейтронов слегка повысится. Это увеличение можно учесть, умножив первоначальное число нейтронов № на множитель ? коэффициент размножения за счет быстрых нейтронов (the fast multiplication factor).

8.10. Так как средняя энергия имеющихся № нейтронов продолжает падать, то неупругие соударения с ураном теряют свое значение, и уменьшение энергии происходит, в основном, в замедлителе. При достижении промежуточных значений энергии интервала энергий «резонансного захвата» вероятность поглощения без деления в U-238 становится значительной. Некоторое число нейтронов в этом интервале энергии будет поглощено независимо от выбора конструкции решетки. Влияние резонансного захвата можно учесть, умножив N? на число p (всегда меньшее единицы), выражающее вероятность того, что данный нейтрон с начальной энергией выше резонансной достигнет тепловой энергии без поглощения ураном 238. Таким образом, из первоначального числа № нейтронов с высокой энергией мы получили N?p нейтронов с тепловой энергией.

8.11. Как только нейтрон достиг тепловой энергии, вероятность дальнейшего замедления в результате соударений оказывается не большей, чем вероятность увеличения скорости. Следовательно, нейтроны будут обладать той же средней энергией до тех пор, пока они не будут поглощены. В интервале тепловых энергий вероятность поглощения нейтронов замедлителем, охладителем или вспомогательными материалами будет больше, чем в интервале более высоких значений энергии. Во всяком случае подсчитано, что если допустить, что все подобные нежелательные поглощения имеют место именно в этом интервале, то ошибка будет невелика. Введем множитель f коэффициент использования тепловых нейтронов, определяющий вероятность того, что данный тепловой нейтрон будет поглощен ураном. Таким образом, из первоначального числа № быстрых нейтронов мы получаем число N?pf тепловых нейтронов, поглощаемых ураном.

8.12. Хотя существует несколько способов, которыми нормальная смесь изотопов урана может поглощать нейтроны, но, как может вспомнить читатель, в одной из предыдущих глав мы ввели величину ?, представляющую собой число освобождаемых при делении нейтронов, приходящихся на каждый поглощенный ураном тепловой нейтрон, независимо от того, какими из этих способов осуществляется процесс. Если мы умножим число тепловых нейтронов, поглощенных ураном, N?pf на ?, то получим число новых быстрых нейтронов, рожденных № первоначальными быстрыми нейтронами в течение их жизни. Если N?pf? > N, то развитие ценной реакции возможно, так как число нейтронов в этом случае непрерывно возрастает. Очевидно, что ?pf? = k?, где k? коэффициент размножения (см. главу IV).

8.13. Отметим, что до сих пор мы совершенно не упоминали о нейтронах, вылетающих из котла. Это было сделано сознательно, так как определенное выше значение k? относится к бесконечной решетке. Исходя из известных значений k? и того факта, что котлы работают, можно притти к заключению, что процент вылетающих нейтронов не слишком велик. Как видно из главы II, вылет нейтронов теряет свое относительное значение по мере увеличения размеров котла. Если приходится вводить в котел большое количество вспомогательных материалов (например, труб охладительной системы), то котлу необходимо придавать несколько большие размеры, чтобы компенсировать увеличение поглощения.

8.14. Итак, работа котла возможна благодаря применению устройства из решетки с замедлителем, уменьшающего энергии быстрых нейтронов до тепловых, и благодаря тому. что тепловые нейтроны получают возможность поглощаться ураном, что вызывает деление, воспроизводящее нейтроны с высокой энергией. Воспроизведению нейтронов в некоторой степени содействует влияние быстрых нейтронов, ему препятствует резонансное поглощение в процессе замедления; поглощение в графите и в других материалах и вылет нейтронов.

ВЛИЯНИЕ ПРОДУКТОВ РЕАКЦИИ НА КОЭФФИЦИЕНТ РАЗМНОЖЕНИЯ

8.15. Даже при той большой мощности, которой обладали котлы в Хэнфорде, на каждый миллион граммов заложенного в систему урана расходовалось в сутки лишь несколько граммов U-238 и U-235. Тем не менее, влияние этих изменений было весьма важно. По мере истощения U-235 концентрация плутония увеличивалась. К счастью, сам плутоний испытывает деления под действием тепловых нейтронов и, таким образом, стремится компенсировать, поскольку дело касается поддержания цепной реакции, уменьшение U-235. Однако, при работе котла получаются и другие продукты деления. Они обычно состоят из неустойчивых и сравнительно мало известных ядер, и вначале было невозможно предсказать, сколь велики будут те нежелательные влияния, которые могут оказать продукты деления на коэффициент размножения. Такие вредные влияния называются отравляющими. Несмотря на большое количество предварительных исследований продуктов деления, непредвиденный отравляющий эффект такого рода едва не заставил приостановить работы в Хэнфорде, с чем мы встретимся позднее.