ИЗМЕРЕНИЯ ПРИ СБОРКЕ КОТЛА

We use cookies. Read the Privacy and Cookie Policy

ИЗМЕРЕНИЯ ПРИ СБОРКЕ КОТЛА

Для того, чтобы быть уверенными, что при сборке котла случайно не будут превзойдены критические размеры, непрерывно производились измерения нейтронной активности. Эти измерения служили также для изучения свойств размножения нейтронов и давали возможность предсказать, где будет достигнута критическая точка.

Для измерения интенсивности реакции можно применять любой детектор нейтронов или ?-лучей. Нейтронные детекторы лучше, так как они быстрее реагируют и не подвержены влиянию излучений продуктов деления после прекращения экспериментов. Нейтронные детекторы (счетчик с трехфтористым бором) и ионизационные камеры для измерения ?-лучей были расположены внутри и вокруг котла. Некоторые из ионизационных камер применялись для приведения в действие регистрирующих приборов и автоматических аварийных приспособлений.

В самом котле измерения производились с помощью детекторов двух типов. Счетчик с трехфтористым бором вставлялся в щель на расстоянии в 43" от основания; с этим счетчиком производились частые отсчеты. Кроме того, фольга из индия каждый вечер облучалась в положении, по возможности самом близком к эффективному центру котла, а индуцированная активность фольги измерялась на следующее утро и сравнивалась с отсчетами счетчика с BF3.

Результаты подобных измерений могут быть выражены двояким образом. Так как число вторичных нейтронов, образовавшихся в процессе деления, постоянно возрастает по мере того, как котел строится, то активность А, индуцированная в стандартной фольге индия в центре, будет постоянно возрастать с увеличением числа слоев котла. Как только эффективное значение коэффициента размножения превысит единицу, А будет возрастать теоретически до бесконечности. Это приближение к бесконечности трудно наблюдать, и поэтому применяется другой способ выражения результатов. Предположим, что промежутки решетки и чистота материалов графито-урановой конструкции таковы, что коэффициент размножения сферы бесконечных размеров был бы в точности равен единице. Тогда, для реальной сферы подобной же конструкции, но конечного радиуса, активация детектора, помещенного в центре, была бы пропорциональна квадрату радиуса. Оказалось возможным определить соответствующий эффективный радиус Rэфф для реального котла в каждой из стадий его сборки. Отсюда вытекало, что если бы коэффициент k? был точно равен единице в среднем для решетки в котле, то активность A детектора в центре возрастала бы с возрастанием Rэфф таким образом, что (Rэфф)2/A оставалось бы постоянным. Если бы k? для решетки было больше единицы, то при приближении

Рис. 7. Число законченных слоев

размеров котла к критическому значению, т. е. при приближении значения kэфф к единице, А должно было бы стремиться к бесконечности и, следовательно (Rэфф)2/A — стремиться к нулю. Экстраполируя кривую зависимости (Rэфф)2/A от размера котла, т. е. от числа слоев до точки ее пересечения с осью абсцисс, можно предсказать, в каком слое kэфф станет равным единице. Такая кривая, изображенная на рис. 7, показывает, в каком слое достигаются критические размеры. Менее удобный, но более прямой способ записи результатов изображен на рис. 8, который показывает рост активности нейтронов котла с увеличением числа слоев.

При сборке котла, значительно ранее достижения критического слоя, в соответствующие щели были вставлены кадмиевые полосы.

Рис. 8. Число законченных слоев

Они вынимались по одному разу в день, с надлежащими предосторожностями, чтобы не пропустить момента приближения к критическим условиям. Так производилась постройка котла, пока не был уложен критический слой.