3.4. Неустойчивость движения АСЗ
3.4. Неустойчивость движения АСЗ
Движение АААА-астероидов совершается в такой области околосолнечного пространства, где оно не может быть устойчивым на длительных интервалах времени, если только какие-либо особые механизмы не поддерживают эту устойчивость. Долготы перигелиев и узлов орбит астероидов на плоскости эклиптики постоянно изменяются под влиянием планетных возмущений. При этом долготы перигелиев, как правило, прогрессивно возрастают, а узлы орбит движутся попятным образом, совершая полные обороты за периоды от нескольких тысяч до нескольких десятков тысяч лет в зависимости от величины большой полуоси астероида (рис. 3.8). В результате этих изменений орбиты большинства АААА-астероидов периодически пересекаются с орбитами Марса, Земли и других планет. Вблизи эпох пересечения орбит возникает реальная угроза столкновения или тесного сближения астероида с большой планетой.
Теория взаимодействия малых тел с большими планетами при их сближениях впервые была разработана Э. Эпиком [?pik, 1951; 1976]. Наиболее вероятным результатом сближения является не столкновение, а трансформация орбиты малого тела. Характер трансформации зависит от обстоятельств сближения. В результате тесного сближения орбита малого тела может быть радикально изменена, вплоть до ее превращения в орбиту, сближающуюся с орбитой Юпитера или пересекающую ее. При большой массе планеты и достаточно тесном сближении возможен выброс малого тела по гиперболической траектории за пределы Солнечной системы. Чаще всего хаотические блуждания малых тел между планетами в результате последовательных сближений и трансформаций их орбит заканчиваются выпадением тел на Юпитер, Солнце или выбросом из Солнечной системы. Характерные времена жизни астероидов, сближающихся с Землей и другими планетами земной группы, исчисляются, по современным данным, от нескольких миллионов до десятков миллионов лет, что явно мало по сравнению со временем существования Солнечной системы. Поскольку популяция этих тел в настоящее время достаточно многочисленна, должны иметься постоянные источники, поддерживающие ее существование. Есть много свидетельств в пользу того, чтобы считать Главный пояс астероидов основным источником АААА-астероидов.
Рис. 3.8. Изменение положения орбиты астероида по отношению к орбите Земли из-за движения перигелия. ?1,?1 — положения перигелия и узла орбиты в эпоху t1; ?2,?2 — их положения в эпоху t2 (собственное движение узла при этом не учитывалось)
Несмотря на очевидные соображения в пользу связи АААА-астероидов и метеоритов с Главным поясом астероидов, пути миграции этих тел в район орбиты Земли во второй половине XX в. на протяжении нескольких десятилетий оставались не вполне ясными. Дело в том, что для преобразования типичной орбиты тела в поясе астероидов в орбиту, пересекающую орбиту Земли, требуется достаточно большой импульс (приращение скорости в несколько километров в секунду). Столкновения тел в поясе астероидов не могут сообщить такое приращение скорости достаточно большой массе. В лучшем случае столкновения могут играть определенную роль в транспортировке небольших тел в район орбиты Марса. Последующие сближения с Марсом могут доставлять некоторое количество вещества в район орбиты Земли. Но этот путь, как и другие известные в то время механизмы, не обеспечивали устойчивого существования популяции астероидов, сближающихся с Землей. Поэтому исследователи вынуждены были искать основной источник тел, способных сближаться с Землей, вне пределов пояса астероидов. Таким естественным источником представлялись периодические кометы, поверхностные слои которых за время многочисленных оборотов вокруг Солнца лишились летучих веществ, некогда входивших в их состав. Ядра подобных «дремлющих» или полностью «выгоревших» комет, покрытые плотной пылевой коркой, могут наблюдаться как астероиды на характерных для комет вытянутых орбитах. Не приходится сомневаться в том, что некоторая часть АСЗ действительно имеет кометное происхождение. Однако оценка вклада комет в общую популяцию АААА-астероидов постепенно снижается. В настоящее время она составляет не более 10 % [Д. Лупишко, Т. Лупишко, 2001; Binzel et al., 2004; Lupishko et al., 2007].
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Загадка движения
Загадка движения До тех пор пока мы имеем дело с прямолинейным движением, мы далеки от понимания движений, наблюдаемых в природе. Мы должны рассмотреть криволинейные движения. Наш следующий шаг — определить законы, управляющие такими движениями. Это нелегкая задача.В
Сохранение момента количества движения
Сохранение момента количества движения Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии
Принцип относительности движения кажется поколебленным
Принцип относительности движения кажется поколебленным Колоссальная, но все же не бесконечная скорость света в пустоте и привела к конфликту с принципом относительности движения.Представим себе поезд, движущийся с огромной скоростью — 240 000 километров в секунду. Пусть
ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ
ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ Одним из крупнейших достижений механики в конце XIX в. явилось создание теории устойчивости движения систем с конечным числом степеней свободы. Основоположником этой теории был А.М. Ляпунов, которому наука обязана и многими другими важными
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ На рубеже XIX—XX вв. в России была создана новая область механики, первые стимулы к разработке которой возникли в теоретическом естествознании и которая приобрела исключительно важное значение в технике
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ В ДОВОЕННЫЙ ПЕРИОД
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ В ДОВОЕННЫЙ ПЕРИОД В советское время идеи Мещерского и Циолковского получили широкое развитие. В работах Мещерского дальнейшее развитие получила его идея «отображения» движения, высказанная им еще в 1897 г. В 1918
Законы эллиптического движения Кеплера
Законы эллиптического движения Кеплера Вторым человеком, сыгравшим решающую роль в утверждении гелиоцентрической системы, был немецкий ученый Иоганн Кеплер (1571–1630), рис. 2.7. Иоганн родился в бедной семье. Поступил в Тюбингенский университет, где с увлечением занимался
II. Законы движения
II. Законы движения Разные точки зрения на движение Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут
7.3. Возмущения, которые необходимо учитывать при уточнении орбиты и прогнозе движения
7.3. Возмущения, которые необходимо учитывать при уточнении орбиты и прогнозе движения Вычисление возможности столкновения того или иного небесного тела с Землей или иной планетой путем достаточно точного прослеживания траектории его движения на длительном интервале
Глава 5. Невероятная история: открытие вечного движения
Глава 5. Невероятная история: открытие вечного движения В занимательной книге Артура Орд-Хьюма «Вечное движение» рассказывается об истории идеи вечного движения и о том, как в течение столетий целые толпы непризнанных изобретателей были одержимы мыслями о постройке