Сохранение момента количества движения
Сохранение момента количества движения
Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии и одновременно вращаться. Любое тело, которое движется по окружности или вращается вокруг своей оси (например, Земля вращается вокруг своей оси и вокруг Солнца), обладает угловой скоростью и имеет угловой импульс, или момент количества движения. По аналогии с обычным импульсом можно также предположить, что момент количества движения равен угловой скорости, умноженной на массу [3]. Но это неверно. Вообразите, что вы стоите на вращающемся столике, держа в каждой руке по тяжелой гире и прижимая их к себе. Вы раскручиваетесь и, если столик вращается почти без трения, будете продолжать вращаться с примерно постоянной угловой скоростью довольно долго. Пусть, например, эта скорость равна двум оборотам в секунду. Если бы момент количества движения равнялся произведению массы на угловую скорость и если бы он сохранялся, вы могли бы изменить угловую скорость, меняя свою массу. Если бы, например, кто-нибудь взял гири из ваших рук, масса на вращающемся столике уменьшилась бы, а ваша угловая скорость увеличилась. Если бы вам в руки дали добавочный груз, ваша угловая скорость уменьшилась бы. Если бы момент количества движения зависел только от массы и угловой скорости, то вы, казалось, могли бы изменить угловую скорость, только изменяя массу.
Предположим, вы стоите на вращающемся столе, держа свои гири у туловища и делая два оборота в секунду. Выпрямите руки с гирями насколько возможно. Внезапно ваша угловая скорость уменьшится, и вы будете двигаться со скоростью, возможно, не более одного оборота в секунду. Прижмите руки опять к туловищу — и угловая скорость станет прежней.
Что же случилось? Ведь общая масса на столе не изменилась от того, что вы вытянули руки! Тогда почему же изменилась угловая скорость? Она должна измениться в ответ на определенные изменения в системе, зависящие не от величины массы. Логично предположить, что в момент количества движения входит расстояние массы от оси вращения. Расстояние части массы (ваших рук с гирями в них) от оси вращения увеличилось. Если это расстояние входит в момент количества движения, следует ожидать уменьшения угловой скорости, компенсирующего увеличение расстояния. Когда руки и гири опять прижаты к туловищу, их расстояние от оси вращения снова уменьшается и угловая скорость увеличивается, компенсируя это уменьшение.
Можно утверждать, что момент количества движения сохраняется, если его определять как произведение массы, угловой скорости и квадрата среднего расстояния массы от оси вращения. Тогда закон сохранения момента количества движения, нарушения которого никто никогда не наблюдал, можно сформулировать так: суммарный момент количества движения замкнутой системы остается постоянным.
Я говорю «суммарный момент количества движения» поскольку угловая скорость, так же как линейная, может иметь разные направления. Различают направление вращения по и против часовой стрелки. Если смотреть на Землю со стороны Северного полюса с большой высоты будет казаться, что она вращается против часовой стрелки.
Если два одинаковых шара вращаются вокруг своей оси со скоростью 10 оборотов в секунду, но один по часовой стрелке, а другой — против, то суммарная угловая скорость такой системы равна нулю. Поскольку шары имеют одинаковую массу, форму и строение, суммарный момент количества движения системы тоже равен нулю. Шары могут столкнуться так, что вращение одного погасит вращение другого. После соударения оба шара не вращаются, и момент количества движения системы снова равен нулю.
Можно считать, что в невращающейся системе одна часть вращается по часовой стрелке, а другая — против и эти движения компенсируют друг друга.
Важно помнить, что, несмотря на аналогию в названиях и проявлениях, законы сохранения импульса и момента количества движения действуют совершенно независимо друг от друга. Нельзя прямолинейное движение замкнутой системы заменить вращением по часовой стрелке или наоборот; во всяком случае, никто никогда подобное превращение не наблюдал.