4. Ошибка лорда Кельвина

We use cookies. Read the Privacy and Cookie Policy

4. Ошибка лорда Кельвина

С тем, что на солнышке жарко, и спорить нечего, но этот факт говорит нам удивительную вещь: на свете существует источник энергии, в миллион раз более концентрированный, чем динамит

Постигнуть, что может поддерживать такой огромный пожар (если это действительно пожар), — значит раскрыть величайшую тайну. Каждое открытие химической науки в этой области заводит нас в совершенный тупик или, скорее, все дальше уводит нас от возможного объяснения загадки.

Джон Гершель («Очерки по астрономии», 1849)[40]

Как же много я не знаю об астрофизике. Надо бы почитать книгу того парня в инвалидной коляске.

Гомер Симпсон («Хэллоуин Симпсонов», VI специальный выпуск, 29 октября 1995 г.)

Прогуливаясь летним днем в парке, вы чувствуете теплые успокоительные лучи Солнца на своем лице. Несмотря на то что до Солнца примерно 150 миллионов километров, оно неплохо нас греет. На самом деле Солнце дает Земле тепло уже 4,55 миллиона лет. Это наблюдение может показаться банальным и очевидным, однако тот факт, что Солнце горячее, говорит нам нечто важное о солнечном источнике топлива. Если взять «шашку» этого топлива и шашку динамита, то первая должна содержать в миллион раз больше энергии.

Чтобы понять, почему это так, для начала надо спросить: почему Солнце горячее? Ответ до удивления прост. Солнце горячее, потому что у него большая масса. Поместите в одном месте большую массу чего бы то ни было, и собственное тяготение этой массы будет неизбежно прижимать все части «чего бы то ни было» ближе друг к другу. Чем больше масса, чем мощнее собственное тяготение, тем с большей силой будет сжиматься материя. Если вы когда-нибудь накачивали камеру велосипедным насосом, то знаете, что насос нагревается. На самом деле прежде всего нагревается воздух в насосе, потому что он сжимается. Солнце горячее именно по этой причине.

В сущности, не имеет особого значения, из чего состоит масса. Солнце в основном «сделано» из водорода и весит примерно миллиард миллиардов миллиардов тонн[41]. Однако соберите в одном месте миллиард миллиардов миллиардов тонн бананов или миллиард миллиардов миллиардов тонн микроволновок, и результат будет тем же: пылающий шар газа, не менее горячий, чем Солнце. Совершенно безразлично, какой материал вы возьмете: сила тяжести такой гигантской массы сжимает материю столь мощно, что температура глубоко внутри составляет миллионы градусов. При этой головокружительно высокой температуре атомы сталкиваются так яростно, что у них просто срывает электроны. В результате получается электрически заряженный газ, или «плазма», — некое анонимное состояние, которое при таких экстремальных условиях становится уделом любой материи, вне зависимости от того, водород это, бананы или микроволновки [42].

Тот факт, что Солнце имеет большую массу, объясняет, почему оно горячее — но, конечно же, только для конкретного мгновения. Он не объясняет, почему Солнце остается горячим. В конце концов, наше светило беспрерывно теряет тепло, излучая его в пространство, и по этой причине оно должно остывать. Однако этого не происходит, из чего можно сделать вывод: что-то восполняет тепло по мере его потери. Но что именно?

На Земле самый привычный для нас источник тепла — горение, сжигание чего бы то ни было. Еще в 434 году до нашей эры греческий философ Анаксагор[43] размышлял о том, что Солнце охвачено пожаром. «Солнце — это огромный раскаленный камень», — сказал он. В сущности, он пошел даже немного дальше и с трогательной точностью объявил, что Солнце представляет собой «раскалённую металлическую глыбу или камень размером во много раз больше Пелопоннеса» [44]. Для сжигания требуется кислород. В школе на уроках физики это демонстрируют, накрывая стеклянным колпаком горящую свечу. Когда последние частицы кислорода пожираются пламенем, огонь шипит и гаснет. Так же и Солнцу для горения требуется источник кислорода. Оставим в стороне совершенно пустячный вопрос: интересно, а где оно может получить такой практически неистощимый источник газа? — и вместо этого зададим вопрос более уместный: что же такое горящее Солнце?

К топливу, которое сжигается на Земле, относятся древесина, нефть, уголь, даже динамит, который при сжигании выделяет тепло столь быстро, что не горит, а взрывается. Горение — это химическая реакция, то есть процесс, при котором электроны перегруппировываются вокруг атомов, поэтому древесину, нефть, уголь, динамит и так далее собирательно называют «химическим топливом» [45]. Получается, что в Солнце тоже сжигается химическое топливо? Может ли оно быть, например, гигантской пылающей глыбой угля — глыбой больше миллиона километров в поперечнике? Это может показаться идиотской идеей. Однако в девятнадцатом веке, когда ученые впервые начали всерьез задумываться, что же питает Солнце, это было вовсе не смешно. В конце концов, они жили в индустриальном обществе, где стало возможным высвобождать энергию, сжигая уголь.

Дабы понять, что такое Солнце — глыба горящего угля или что-то еще, — надо оценить, как много тепла оно излучает в космос. Только вооружившись такой оценкой, можно определить, действительно ли глыба горящего угля величиной с Солнце способна выполнить такую работу. Решающие измерения произвели в XIX веке французский физик Клод Пуйе (1790–1868) и, независимо от него, английский астроном Джон Гершель. Последний был сыном Уильяма Гершеля, который в 1781 году обнаружил планету, не известную в древности, — он открыл Уран [46]. В 1834 году Джон Гершель приплыл в Кейптаун с заданием дополнить звездные карты Британского адмиралтейства картами Южного полушария неба. С женой, детьми, телескопом и пожитками он долго бродил по кишащим бегемотами болотам, пока не нашел место для обсерватории на возвышенности рядом с городом. Сейчас этот пригород Кейптауна называется Обсерваторией. И здесь в 1837 году, в часы дневного отдыха между ночными наблюдениями, Гершель успешно измерил тепловую отдачу Солнца.

Гершель и Пуйе пришли примерно к одному и тому же выводу: ежегодно Солнце выделяет достаточно тепла, чтобы растопить на Земле слой льда толщиной 31 метр. Возможно, это покажется не очень впечатляющим, но надо принять во внимание, что солнечное тепло распространяется не только в направлении нашей маленькой планеты — оно расходится во всех направлениях. Из этого можно сделать только один вывод: солнечного тепла достаточно для того, чтобы каждый год растапливать 31-метровый слой льда не только на Земле, но повсюду на расстоянии радиуса земной орбиты. Другими словами, оно может растопить сферическую оболочку, толщина которой — 31 метр, а поперечник — 300 миллионов километров! Вообразите себе надувной пляжный мяч, который настолько велик, что вмещает в себя околосолнечную орбиту Земли, и еще вообразите, что его внутренняя поверхность покрыта слоем льда толщиной 31 метр. Вот сколько льда Солнце может растопить за один год. Этого льда достаточно — тут можно прибегнуть к другому сравнению, — чтобы слепить из него примерно 500 земных шаров.

Вооружившись оценкой количества тепла, выделяемого Солнцем, ученые девятнадцатого века задумались: а возможно ли, чтобы наше светило и впрямь работало на угле? Первым, кто произвел необходимый эксперимент, был немецкий врач Юлиус фон Майер (1814–1878). В 1848 году он измерил количество тепла, получаемое при сжигании крупного куска угля в жаровне. Затем он изменил масштаб и математически «раздул» глыбу до размеров Солнца. Вопрос был следующий: как долго такое количество угля может поддерживать солнечное тепло, измеренное раньше Гершелем и Пуйе, пока глыба не превратится в тлеющий уголек? Ответ фон Майера был совершенно четок: не более пяти тысяч лет. Поразительно короткий срок! Он был слишком коротким даже для буквальных толкователей Библии, которые считали, что Земля была создана вечером 22 октября в 4004 году до Рождества Христова [47].

Итак, уголь был исключен из источников топлива, поддерживающих высокую температуру Солнца. Впрочем, та же участь постигла и остальные виды химического топлива, включая динамит. Что же тогда питает Солнце энергией? Фон Майер выдвинул невероятное предположение. Он пришел к мысли, что Солнце поддерживается в горячем состоянии за счет метеоритов, постоянно на него падающих. Идея проста. Представим, что вы берете большой камень и с высокой скалы бросаете его на покрытый галькой пляж. Камень ускоряется во время падения и врезается в гальку. Существуют разные виды энергии — химическая, звуковая, электрическая и так далее. Согласно закону сохранения энергии, который фон Майер, кстати, признал одним из первых, энергия не может быть создана или уничтожена, она может лишь перейти из одного вида в другой. В случае с падающим камнем «гравитационная потенциальная энергия» — энергия, заключенная в гравитационном «силовом поле», которое удерживает все на Земле, — переходит в «энергию движения». Камень падает на пляж со звуком, подобным пистолетному выстрелу. Целые галечные камешки и их осколки шрапнелью разлетаются в разные стороны. Температура камня и потревоженной гальки при этом немного повышается, да что там камень и галька, чуть-чуть повышается даже температура воздуха, коль скоро он сотрясается от звука удара. И тем не менее все подчиняется закону сохранения энергии. Одна форма энергии — энергия движения камня — переходит в другие формы: в энергию движения разлетающейся гальки, звуковую энергию, тепловую и так далее.

Тепловая энергия — самая рядовая форма энергии, нижняя ступенька лестницы, конечный шлак Вселенной. Это энергия беспорядка, случайности, хаотичного движения микроскопических атомов. В конечном итоге, когда звук падения камня рассеивается в воздухе, а галечная шрапнель успокаивается, заняв новые места на пляже, все, что остается, — это тепло. Таким образом, когда камень падает на пляж, происходит, в сущности, не что иное, как трансформация гравитационной энергии в тепловую. Именно эту трансформацию и имел в виду фон Майер, когда он предположил, что источник солнечного тепла — метеориты, дождем сыплющиеся на наше светило. Заменим поверхность Солнца пляжем, а космические камни — метеориты — земным камнем, и вот пожалуйста: перед нами идея фон Майера в самом общем виде.

«Метеоритная гипотеза» была с восторгом подхвачена Уильямом Томсоном (1824–1907), более известным как лорд Кельвин. Именно Кельвину, одному из величайших ученых XIX столетия, мы обязаны температурной шкалой, которой до сих пор пользуются все ученые, и первым трансатлантическим телеграфным кабелем. Он также считал вопрос о том, что именно поддерживает высоченную температуру Солнца, одной из главных, хотя и трудно разрешимых проблем эпохи. Кельвин внимательно рассмотрел метеоритную гипотезу. Однако, будучи подвергнута пристальному изучению, она рассыпалась в прах. Чтобы обеспечить выход солнечной энергии, соответствующий измерениям, слой метеоритного мусора, накапливающегося на поверхности Солнца, должен расти со скоростью десять метров в год. Это повлекло бы за собой некоторый прирост диаметра Солнца — впрочем, слишком маленький, чтобы его можно было обнаружить экспериментально, так что ахиллесова пята идеи была не в этом. Кельвин предположил, что космический мусор, падающий на Солнце, должен пребывать в некой области пространства, которая ближе к Солнцу, чем к Земле. Если бы это было не так, то при движении Земли по орбите вокруг Солнца наша планета сама подбирала бы этот мусор, отчего менялись бы орбитальная скорость Земли и продолжительность года. Однако подобных эффектов никто не наблюдал. А если весь мусор, падающий на Солнце, пребывает в некой области внутри земной орбиты, то возникает другая проблема: этот мусор должен обладать небольшой, но ощутимой силой собственного тяготения. По расчетам Кельвина, ее было бы достаточно, чтобы повлиять на движение внутренних планет — Меркурия и Венеры — по своим орбитам. И снова та же картина: подобный эффект никем не наблюдался.

К 1862 году Кельвин[48] распрощался с метеоритной гипотезой.

Вместо этого он воодушевился другим предположением: идеей, что Солнце сохраняет высокую температуру, потому что оно медленно сжимается. «Гипотеза сжатия» была детищем шотландского гидрографа Джона Джеймса Уотерстона (1811–1883), который, независимо от фон Майера, в 1853 году тоже пришел к метеоритной идее. Кстати, научный доклад именно Уотерстона, а не фон Майера привлек внимание Кельвина к метеоритной гипотезе. Красота идеи сжатия Солнца состояла в том, что это сжатие, по сути, неизбежно. Солнце — гигантский газовый шар; сила тяготения делает все возможное, чтобы сжать этот шар, между тем как сила раскаленного газа, рвущегося наружу, делает все от нее зависящее, чтобы расширить его. Эти две противоположные силы находились бы в полном, даже изысканном равновесии, если бы не одна проблема: Солнце постоянно теряет тепло, излучая его в пространство. Потеря тепла лишает газ его способности рваться наружу, пренебрегая гравитацией. Получается, что сила тяготения не просто владычествует, но набирает все больше и больше власти, а из этого следует только один вывод: Солнце должно сжиматься.

При сжатии газовый шар разогревается. Вновь вспомним о нагреве воздуха в велосипедном насосе [49]. Можно представить сжатие газа и по-другому — в виде очень медленного метеоритного дождя. Однако в данном случае речь идет не о малом количестве вещества в виде камней, стремительно пронзающих гравитацию Солнца (как это было бы при метеоритном нагреве), а о том, что сквозь поле тяготения Солнца очень медленно «проваливается» огромное количество вещества — собственно, вся масса светила. Оба механизма «подключены» к одному и тому же могучему источнику, первичному источнику энергии во Вселенной — гравитации. А гравитационная энергия, как понял Уотерстон, потенциально куда больший резервуар энергии, чем любое химическое топливо.

Вычисления Уотерстона показали, что если бы Солнце сжималось на 280 метров в год — это всего лишь 10 миллионных от его диаметра, и такое сжатие абсолютно не заметно с Земли, — то подобной убыли хватило бы, чтобы восполнять постоянно отдаваемое космосу тепло. Идея сжатия была весьма многообещающей, но ее требовалось проверить. Кельвин и его немецкий современник Герман фон Гельмгольц нашли способ сделать это. Если Солнце сжимается сегодня, рассудили ученые, оно должно было сжиматься и в прошлом. Когда-то давным-давно Солнце, надо полагать, было гигантским газовым облаком, намного большим, чем даже нынешняя Солнечная система. Кельвин и Гельмгольц рассчитали, какое количество гравитационной энергии должно было превратиться в тепло, пока это колоссальное облако сжималось до того объема Солнца, который известен сейчас. А затем они задались вопросом: как долго это тепло могло поддерживать сияние Солнца на уровне, наблюдаемом в современную эпоху? И получили ответ: не более 30 миллионов лет.

Продолжительность жизни в 30 миллионов лет — гораздо больше, чем пять тысяч лет для Солнца, работающего на угле. Но, как ни удивительно, этого все равно недостаточно. Существуют серьезные доказательства со стороны геологии и биологии, что Земля — а следовательно, и Солнце, коль скоро его возраст никак не меньше возраста Земли, — значительно старше, чем это получалось по оценке Кельвина и Гельмгольца.

И геологи, и биологи распознали процессы, которые коренным образом изменили лик Земли, но эти процессы протекают столь невероятно медленно, что их ход оставался незаметным на протяжении всей человеческой истории. Если говорить о геологии, то горы, когда-то бывшие морским дном, о чем свидетельствуют окаменелые морские твари на их вершинах, взметнулись к небу, достигнув многокилометровой высоты. Если говорить о биологии, то населяющие Землю существа, при всем их потрясающем многообразии, судя по разным признакам, эволюционировали из простейшего общего предка, преобразуясь из одной формы в другую под управлением дарвиновского естественного отбора. Эти превращения сформировали земную поверхность, ее флору и фауну. Но чтобы это произошло, потребовалась умопомрачительная, неохватная прорва времени. Не просто десятки миллионов, а сотни миллионов, может быть, даже миллиарды лет.

Картина понятная: точная оценка возраста Земли и Солнца нужна для того, чтобы узнать наверняка, как долго горит Солнце и какое количество энергии требуется солнечному источнику питания. Такую оценку не могли дать ни биология, ни геология — вся надежда была на физику. И, как ни парадоксально, в данном случае именно непредсказуемость квантового мира помогла создать лучшее, что только можно придумать в области предсказуемости, — квантовые «часы».

Одному человеку удавалось лучше всех остальных обернуть причуды и слабости природы к собственной выгоде, и этим человеком был Эрнест Резерфорд. В конце концов, именно он с нескрываемой наглостью «разоблачил» атом, использовав атом одного элемента — радия, — чтобы выявить внутреннее строение атома другого элемента — золота [50]. И не кто иной, как Резерфорд, выступил с идеей использовать радиоактивные атомы, чтобы определять возраст камней. Ключом к «радиоактивному датированию» стало наблюдение, сделанное Резерфордом в 1900 году: ученый обнаружил, что радиоактивность образца, который он изучал, снижалась, повинуясь простому закону. По прошествии определенного временного интервала половина атомов оставались нераспавшимися; столько же времени требовалось на то, чтобы распалась еще четверть атомов; еще один такой интервал — распадалась одна восьмая, и так далее. Этот интервал окрестили «периодом полураспада»; свой период полураспада есть у любого радиоактивного вещества.

Резерфорд не догадался, что этот поразительно простой закон атомного распада — на самом деле неизбежное следствие неодолимой случайности, царящей в микроскопическом мире [51]. Если бы ему это удалось, он предвосхитил бы Эйнштейна, который увидел в фотонах руку Бога, бросающего кости. Однако Резерфорд, хотя и упустил одно открытие, сделал другое. Он понял, что закон радиоактивного распада может оказаться мощным инструментом для датирования невероятно старых вещей.

Период полураспада различных радиоактивных веществ варьируется от мимолетных долей секунды до многих миллиардов лет. В случае урана, который широко распространен в природе, период полураспада непомерно велик — 4,5 миллиарда лет. Как правило, конечный элемент ряда радиоактивного распада тяжелых элементов наподобие урана — это стабильный элемент свинец. Следовательно, по прошествии времени количество свинца в урансодержащих минералах неумолимо возрастает по сравнению с количеством урана. Измерение этой пропорции, таким образом, демонстрирует, сколько периодов полураспада прошло с того момента, как минерал сформировался и затикали радиоактивные часы. Если, например, в минерале осталась половина урана, значит, произошел один полураспад; если четверть — два полураспада, и так далее.

Американский физик Бертрам Болтвуд (1870–1927) усовершенствовал резерфордовскую технику радиоактивного датирования. Он обнаружил, что камни, собранные на Шри-Ланке, невероятно, неправдоподобно стары — им 2,2 миллиарда лет. В наши дни лучшие оценки возраста Земли получены в результате радиоактивного датирования не земных пород, а камней из космоса. Метеориты — в общем и целом их считают строительным мусором, оставшимся после формирования Солнечной системы, — говорят, что Болтвуд даже сильно преуменьшил возраст Земли: ей не 2,2, а примерно 4,55 миллиарда лет.

Почтеннейший возраст Земли дает возможность оценить то колоссальное количество энергии, которое необходимо Солнцу, чтобы оно сохраняло свою высоченную температуру. Вообще говоря, химическое топливо не так уж неэффективно. Литр бензина содержит достаточно энергии, чтобы машина массой в одну тонну могла пройти двадцать километров. Марафонец может пробежать 42 километра, «заправившись» тарелкой макарон. Но химическое топливо не способно поддерживать высокую температуру Солнца свыше пяти тысяч лет. Поскольку возраст Земли едва ли не в миллион раз больше, это говорит нам, что источник солнечного топлива в миллион раз мощнее, чем бензин или макароны.

Ядерная энергия

Первый ключик к тому, что на самом деле питает Солнце, нашелся, когда ученые преуспели в измерении тепла, выделяемого радиоактивным веществом. Хотя радиоактивность была открыта в 1896 году французским физиком Антуаном Анри Беккерелем, получить даже малые количества радиоактивных веществ было чрезвычайно сложно. На самом деле потребовались титанические труды Марии Кюри, чтобы почти из тонны урановой руды, «урановой смолки», добыть крохотные крупицы радиоактивных элементов — полония и радия. Однако к 1903 году муж Марии, Пьер, и его коллега Альбер Лаборд накопили достаточно радия, чтобы измерить его тепловой выход. То, что они обнаружили, ошеломило ученых. Радий выделял достаточно тепла, чтобы всего за 45 минут нагреть равноценный объем воды от температуры замерзания до температуры кипения. Если это вас не впечатляет, подумайте о том, что радий проделает то же самое и в следующие 45 минут. И в следующие. И может продолжать эту свою деятельность без малейших заминок сотни, даже тысячи лет подряд. С тонной радия вы можете кипятить тонну за тонной воды каждые 45 минут — по сути, до бесконечности.

Измерения Кюри и Лаборда показали, что внутри атомного ядра таится едва ли не бездонный резервуар энергии; ждать оставалось недолго: в самом ближайшем времени кто-нибудь должен был ухватиться за это открытие и предположить, что именно радиоактивность служит источником энергии Солнца. И вот здесь Резерфорду явно не хватило воображения. «Энергия атома не тот предмет, о котором стоит много говорить, — заявил он. — Те, кто ожидает получить источник энергии от трансформации атомов, несут вздор»[52]. Резерфорд ошибся, сочтя радиоактивность скудным источником энергии. Однако ошибались и те, кто видел в радиоактивности источник энергии Солнца.

Атомы разных элементов испускают свет с различными длинами волн, таким образом, получаются своеобразные «дактилоскопические отпечатки», «пальчики», по которым можно определить, какой именно элемент послужил источником данного светового излучения. Но когда астрономы стали исследовать с этой целью солнечный свет, они не смогли обнаружить «пальчиков» ни радия, ни урана, ни какого-либо иного радиоактивного вещества. Несмотря на это, одно было неоспоримо: атомное ядро — средоточие колоссальной энергии. Оно также оставалось едва ли не единственным кандидатом на роль поставщика солнечной энергии. Но если радиоактивность снимается с пробега, может быть, есть другой способ высвобождения энергии, распирающей атомные ядра?

Свидетельство того, что такой способ есть, поступило с неожиданной стороны. Скромный физик Фрэнсис Астон (1877–1945) сделал ключевое открытие вскоре после окончания Первой мировой войны. В одном из подвалов Кембриджского университета он собрал установку, позволявшую скрупулезно измерять массы атомов различных элементов. По существу, его «масс-спектрограф» измерял, насколько траектории различных атомов искривляются под воздействием магнитного поля. Если бы у всех атомов — строго говоря, не у всех атомов, а у заряженных, то есть «ионов», — был один и тот же электрический заряд, то больше искривлялись бы траектории тех, что обладают меньшей массой, и меньше искривлялись бы траектории тех, что потяжелее. Чтобы получить наглядное представление об этом, Астон поместил на пути летящих атомов фотопластинку, тем самым принудив их оставлять неизгладимые следы.

То, что Астон обнаружил, измерив массы разных атомов, было неожиданным и донельзя удивительным. Однако, чтобы оценить это в полной мере, надо знать кое-что об атомах — точнее, о ядрах атомов. Они сами выстроены из более мелких кирпичиков. Один такой ядерный кирпичик «Лего» обладает массой протона — ядра атома водорода. (На самом деле — наверное, чтобы доставить всем еще больше трудностей — природа использует два разных кирпичика, причем оба с массой протона: собственно протон и нейтрон, открытый лишь в 1932 году.) Ядро самого легкого элемента — водорода — состоит из одного ядерного кирпичика «Лего»; в ядре гелия, следующего по весу атома, их четыре; потом идет литий с шестью кирпичиками, и так далее; где-то в самом конце этого ряда — уран, который выстроен из 238 кирпичиков.

Резонно предположить, что гелий, сделанный из четырех кирпичиков, должен весить в четыре раза больше, чем один кирпичик — ядро водорода; литий — в шесть раз больше; уран — в 238 раз, и так далее. Однако Астон обнаружил вовсе не это. Вопреки ожиданиям, диктуемым здравым смыслом, его масс-спектрограф показал, что каждое ядро весит меньше, чем сумма кирпичиков «Лего», из которых оно составлено. Представьте, что вы кладете на весы десять килограммовых пакетов риса, а весы показывают девять килограммов. Вот какую бомбу взорвал Астон в мире физики. Однако посмотрим на это с другой стороны. Если тяжелое ядро каким-то образом все же собралось из основных кирпичиков, значит, в ходе процесса часть массы бесследно исчезла. Но куда же она делась? Оказывается, ответ на этот вопрос и служит ключом к тайне источника солнечной энергии.

Здравый смысл говорит, что масса не может исчезнуть. И тем не менее может! Именно это открыл Эйнштейн в 1905 году. Его теория относительности навсегда изменила наши представления о природе пространства и времени. Но также она сообщила кое-что еще, и тоже совершенно неожиданное: масса — это форма энергии. Таким образом, к электрической энергии, энергии движения и всем прочим бесчисленным проявлениям энергии следует добавить новую сущность: массу-энергию. Значение этого открытия трудно переоценить. Ведь энергия, согласно закону сохранения энергии, не рождается из небытия и не уходит в небытие, а лишь преобразуется из одной формы в другую. Если масса — это форма энергии, следовательно, масса-энергия может перейти в другую форму энергии. Да, энергия не может исчезнуть, а вот масса — может. Но как именно это произойдет, если мы попробуем сцепить ядерные кирпичики «Лего» друг с другом, чтобы составить большое ядро?

Тут важно задуматься о той силе, что склеивает все в этом мире. Вспомните камень, падающий на галечный пляж. Между Землей и камнем существует сила тяготения, которая и тянет их друг к другу. А когда камень падает на пляж, освобождается энергия — в конечном итоге тепловая, — источником которой служит гравитационное поле Земли. Ну так вот, в том случае, когда соединяются ядерные кирпичики «Лего», происходит нечто очень похожее. Существует сила, которая толкает их друг к другу, да еще с ускорением. И когда кирпичики на большой скорости яростно сшибаются друг с другом, освобождается энергия — в конечном итоге тепловая, — источником которой служит силовое поле между кирпичиками «Лего». Сила, существующая между ядерными кирпичиками «Лего», называется «сильным взаимодействием», и она отличается от силы тяготения в нескольких отношениях. Самое главное — то, что это взаимодействие в 10 000 триллионов триллионов триллионов раз сильнее гравитационного. Его не зря окрестили «сильным».

Вновь подумайте о падающем камне, о том, с какой неистовой силой он врезается в пляж, и о том, что при этом освобождается энергия. А теперь попробуйте вообразить это неистовство и эту освобождаемую энергию, если земное тяготение будет в 10 000 триллионов триллионов триллионов раз сильнее. Наверное, вы уже понимаете, сколь велика энергия, вырывающаяся на свободу при формировании тяжелых ядер из ядерных кирпичиков «Лего». Вот почему, если говорить коротко, атомное ядро представляет собой средоточие колоссальной энергии.

По этой же причине и атомные ядра, которыми занимался Астон, «весили» меньше, чем сумма их составных частей. Колоссальная энергия, выделявшаяся при формировании этих ядер, должна была откуда-то взяться, и бралась она из массы-энергии частиц, соединявшихся в ядре. Масс-спектрограф Астона показал самую что ни на есть конкретную реальность того, что теоретически предсказал Эйнштейн: масса — это форма энергии, и, таким образом, она может преобразовываться в другие формы энергии.

Масса-энергия — вещь особая: это самая концентрированная форма энергии из всех возможных. Энергия (Е), содержащаяся в массе (m), выражается, бесспорно, самой известной формулой во всей науке: E=mc2, где с — принятое в физике обозначение скорости света. Использовав формулу Эйнштейна и «пропавшую» массу, измеренную Астоном, ученые смогли рассчитать энергию, вырывающуюся на свободу при формировании ядер из составляющих их кирпичиков. Цифра была умопомрачительная. При прочих равных, формирование атомных ядер высвобождает примерно в миллион раз больше энергии, чем динамит.

Множитель 1 000 000 говорил о многом. Именно этого множителя «не хватало» химическому топливу в виде угля или динамита, чтобы разжечь Солнце. Резерфорду, который обозвал «вздором» возможность получения энергии из трансформации ядер, пришлось взять свои слова назад. «Постоянство солнечной энергии… больше не представляет какой-либо фундаментальной трудности, если внутренняя энергия составляющих элементов считается доступной, — заявил он, — то есть если идут процессы субатомного превращения»[53].

Ядерная энергия и солнце

Какие же процессы субатомного превращения могут питать Солнце? Открытие Астона ясно говорило о том, что если бы атомное ядро собиралось из базисных ядерных кирпичиков «Лего», что называется, с чистого листа, то произошел бы настоящий прорыв плотины и высвободилась бы колоссальная энергия. Однако возможно ли, чтобы именно такой процесс формирования элементов происходил внутри Солнца? Маловероятно, что все кирпичики в одно и то же время собираются вместе — это все равно как если бы компания друзей сошлась на углу улицы секунда в секунду. Куда больше шансов на то, что друзья будут подходить поодиночке. То же самое должно быть и внутри Солнца: если там происходит процесс формирования элементов, то, вероятнее всего, он идет шаг за шагом, путем усердного пристраивания кирпичика к кирпичику. И действительно, тому существовало доказательство — оно было в данных, полученных Астоном. Точнее, оно проявилось в его данных, когда Астон усовершенствовал свой масс-спектрограф и его измерения массы атомного ядра стали еще более точными.

Результаты первых экспериментов Астона говорили о том, что масса каждого атомного ядра меньше, чем сумма составляющих его кирпичиков. В свете открытия Эйнштейна было ясно: это происходит потому, что, если бы природа собирала ядра «на пустом месте», буквально с чистого листа, то масса-энергия пропадала бы, переходя в другие формы энергии. Но просто знать, какое количество массы-энергии пропадает при создании ядра одного типа, недостаточно: это не позволяет значимым образом сравнить данное ядро с иными ядрами, поскольку, разумеется, некоторые ядра больше, чем другие. В целях сравнительного анализа лучше измерять количество массы-энергии, теряемое с каждым кирпичиком. В конце концов, чем больше теряется массы-энергии, тем легче будут казаться кирпичики, из которых складывается ядро.

Применив этот подход, Астон увидел, что в результатах его измерений начинает вырисовываться четкая картина. Ядра атомов железа и никеля — это весьма средние ядра, если иметь в виду количество составляющих их частей, — собраны из наилегчайших отдельных кирпичиков. В ядрах элементов с меньшим количеством кирпичиков, чем у никеля и железа, кирпичики были тяжелее. И та же картина с ядрами элементов, состоявших из большего количества кирпичиков.

График отразил ситуацию более точно. По горизонтальной оси Астон выстроил ядра в соответствии с возрастающим количеством кирпичиков, начиная с водорода слева и заканчивая ураном далеко справа. Вертикальная ось отображала вес ядерных кирпичиков. На графике получилась горная долина. На дне долины устроились ядра железа и никеля. Высоко на левом склоне располагались ядра «маленьких» элементов, таких, как гелий, а высоко на правом склоне размещались ядра «больших» элементов наподобие урана.

Маленькая масса в пересчете на один ядерный кирпичик означает, что изрядная масса была потеряна при сборке ядра из составляющих частей. А потеря большой массы может происходить только в том случае, если составляющие части с силой врезаются друг в друга, подчиняясь мощной силе притяжения. Поэтому такие ядра чрезвычайно крепко связаны и соответственно очень стабильны. Иными словами, кривая Астона показала, что никель и железо — состоящие из легчайших кирпичиков — самые стабильные ядра в природе. По этой причине получившуюся у Астона кривую стали называть «долиной ядерной стабильности».

На первый взгляд может показаться, что все сказанное не имеет никакого отношения к тому таинственному процессу высвобождения ядерной энергии, которым увлечено Солнце. Но это не так.

В природе все тела имеют сильнейшую склонность минимизировать, насколько это возможно, свою энергию. Например, футбольный мяч, оказавшийся на склоне долины, непременно попробует скатиться на дно, минимизируя свою потенциальную, то есть гравитационную, энергию. Ну так вот, ядра в астоновской долине ядерной стабильности ведут себя точно так же, как футбольный мяч. При первой же возможности они покатятся вниз, чтобы свести к минимуму свою массу-энергию. Теоретически они должны скатиться до самого дна — то есть превратиться в ядра железа и никеля. Однако на практике самое большое, на что они способны, — это скатиться ненамного, во всяком случае за один раз.

Такая картина сразу же проливает свет на то, почему радиоактивность в основном — свойство больших, тяжелых ядер, подобных ядрам урана. А все из-за того, что они располагаются высоко на правом склоне долины ядерной стабильности. Они могут уменьшить количество массы-энергии, приходящейся на один кирпичик, скатившись по склону — то есть распавшись на меньшие, более легкие ядра. Однако астоновская долина ядерной стабильности предлагает и другой возможный способ высвобождения ядерной энергии. Ядро, сидящее высоко в левой части долины, также может убавить массу-энергию, приходящуюся на один кирпичик, скатившись по своему склону — то есть трансформировавшись в большее, более тяжелое ядро. При таком процессе формирования элементов — он представляет собой полную противоположность радиоактивности — излишки ядерной энергии будут высвобождаться с той же обязательностью, как и при радиоактивном распаде.

Измерения Астона неожиданным образом вывели на сцену возможный ядерный процесс, который мог бы питать Солнце энергией. Неужели там, глубоко в недрах Солнца, маленькие, легкие ядрышки элементов складываются в более крупные и тяжелые ядра — «синтезируют» их? В 1920-е годы эту идею с энтузиазмом подхватил английский астроном Артур Стэнли Эддингтон (1882–1944) — тот самый ученый, который доказал правоту Эйнштейна и таким образом возвел его к звездным небесам науки. В 1919 году Эддингтон измерил отклонение лучей звездного света за счет гравитации Солнца во время полного солнечного затмения и подтвердил: отклонение было именно таким, каким его предсказывала теория Эйнштейна. Когда один физик задал Эддингтону вопрос: правда ли, что он полагает себя одним из трех человек в мире, которые понимает теорию Эйнштейна? — Эддингтон в ответ спросил: «А кто третий-то?»

Эддингтон быстро сконцентрировался на первом шаге в процессе формирования элементов: слиянии ядер самого легкого элемента — водорода — в ядро следующего по легкости элемента — гелия. Согласно данным астоновского масс-спектрографа, в этом процессе исчезает, превращаясь в тепло, целых 0,8 % массы — больше, чем в любом другом процессе ядерного синтеза. «Я думаю, звезды — это тигли, в которых более легкие атомы сплавляются в более сложные элементы», — заявил Эддингтон.

Синтез гелия из водорода был обещающей, даже многообещающей реакцией. Но существовали две крупные проблемы. Первая — довольно серьезная — заключалась в том, что Солнце, как казалось, вовсе не содержит водорода. Зато весь его спектр был заляпан характерными «пальчиками» железа. Если принять это за чистую монету, следовало предположить, что Солнце исключительно из железа и состоит. Однако один ученый, точнее, ученая осмелилась не согласиться с «железной» версией. Звали ее Сесилия Пейн (Сесилия Хелена Пейн-Гапошкин, 1900–1979), и написала она, пожалуй, самую важную докторскую диссертацию по астрономии в двадцатом веке. Пейн отлично разбиралась в квантовой теории. Согласно этой теории, каждый раз, когда электрон в атоме переходит с одной орбиты на другую, обладающую более низкой энергией, излишек энергии выплескивается в виде светового излучения с характерной длиной волны. Сесилию Пейн озарило: она поняла, что элемент может быть очень распространенным и тем не менее выдавать совсем немного света, сообщая о своем присутствии. Это может происходить, например, при очень высокой температуре — достаточно высокой, чтобы электроны, обращающиеся вокруг атомных ядер, были большей частью сорваны со своих орбит. Пейн показала, что в случае с водородом это действительно так — и именно при температуре 5600 градусов, типичной для поверхности Солнца.

Вычисления Пейн показывали, что только крохотная доля атомов водорода сохраняла свои электроны, но, несмотря на это, солнечный водород все равно излучал заметно много света. Как догадалась Пейн, есть только одна причина, по которой это может происходить: если пресловутая крохотная доля атомов — это крохотная доля чудовищно большого количества атомов. По расчетам ученой получалось, что Солнце невероятно богато водородом: оно на 90 % состоит из этого элемента. Да, в солнечном излучении очень много волн с разными длинами, испускаемых железом, но это не потому, что Солнце «железное», а лишь по той простой причине, что атомы железа содержат много электронов — их там 26, если говорить точно, — и эти атомы почти никогда не бывают лишены всех своих электронных оболочек. При таком количестве электронов и таком множестве разных орбит, между которыми электроны прыгают как сумасшедшие, солнечное железо излучает свет на сотнях волн различной длины.

Впоследствии астрономы обнаружили, что водород составляет 90 % всех атомов не только на Солнце, но повсюду во Вселенной. Они начали понимать, что элементы, из которых состоит Земля (не говоря уже о нас с вами), — всего лишь незначительные примеси в обыкновеннейшей материи, из которой состоит мир. Несмотря на это, открытие Пейн было очень противоречивым. Большинство астрономов того времени упорно стояли на своей вере в железное Солнце. И хотя Пейн открыла главные составные части Вселенной, ее научный руководитель, видный американский астрофизик Генри Норрис Расселл (1877–1957), настаивал, чтобы Пейн исключила из своей работы любые утверждения такого рода. В диссертации, опубликованной в 1925 году, Пейн вынуждена была «уточнить»: «Огромный избыток (водорода)… почти наверняка является нереальным»[54]. По иронии судьбы четыре года спустя, когда доказательства правоты Пейн сыпались уже как из ведра, честь этого открытия досталась Расселу. Таков был горький удел женщины-астронома в первые десятилетия двадцатого века.

Однако для Эддингтона работа Пейн была лишь подтверждением той картины, что просто должна была быть на самом деле. Он верил, что Солнце питает тепловая энергия, высвобождаемая при синтезе гелия из водорода, поэтому Солнце обязано было содержать значительное количество водорода, кто бы что ни говорил. Но даже если допустить, что наше светило — это гигантский водородный шар, возникает другая серьезная проблема: для реакций ядерного синтеза Солнце недостаточно горячо.

Как уже отмечалось, при формировании сложносоставного ядра базисные ядерные кирпичики склеиваются воедино посредством сильного взаимодействия, а еще указывалось, что это взаимодействие в нескольких отношениях отличается от силы тяготения. Одно из отличий — то, что сильное взаимодействие в 10 000 триллионов триллионов триллионов раз мощнее гравитационного. Другое же важное отличие заключается в том, что сильное взаимодействие работает на невероятно коротких расстояниях. Пока два ядерных кирпичика не сблизятся настолько, что почти коснутся друг друга, они вообще не почувствуют никакого притяжения. А затем — вжжжик! — их захватывает микроскопическое подобие «притягивающего луча» из «Звездного пути», и вот кирпичики уже сталкиваются лбами с оглушительным треском. Таким образом, чтобы два ядра водорода склеились и получился гелий, нужно заставить эти ядра подойти друг к другу на очень-очень близкое расстояние, а уж потом сильное взаимодействие сделает все остальное. Ну да, заставить два ядра водорода подойти друг к другу… Легко сказать! Из своей планетарной модели атома Резерфорд вывел, что где-то там в ядре должна находиться массивная положительно заряженная частица, которая уравновешивает отрицательный заряд обращающихся вокруг ядра электронов, — «протон». В ядре водорода, легчайшего из атомов, содержится один-единственный протон. Но ведь одноименные заряды отталкиваются. Для того чтобы два протона сблизились и подпали под действие «сильного» ядерного клея, необходимо преодолеть их яростное отталкивание.

Внутри Солнца ядра водорода находятся в бешеном движении. Чем выше температура, тем быстрее движутся протоны и тем сильнее они сталкиваются друг с другом. Но вот насколько должна быть высокой температура, чтобы ядра водорода врезались друг в друга с силой, способной преодолеть их взаимную неприязнь? Эддингтон нашел ответ: около 10 миллиардов градусов. Неужели наше Солнце столь горячо?

Измерение температуры в самом сердце Солнца — если, конечно, не заглянуть туда с термометром в руках — кажется очень трудной задачей. Однако Эддингтон нашел способ оценить эту температуру: он просто допустил, что Солнце — газовый шар, и постарался определить, насколько сжата материя в его центре. Это все та же старая история с велосипедным насосом. Вспомним: то, что Солнце горячее, не имеет никакого отношения к источнику энергии Солнца. Оно горячее просто потому, что содержит колоссальную массу, которая давит на его внутренности. Эддингтон взялся вычислить, насколько горяча масса, находящаяся в самом центре светила, и получил результат: несколько десятков миллионов градусов (по современным данным, около 15 миллионов градусов). Проблема в том, что эта температура примерно в 1000 раз меньше той, что нужна для реакции синтеза гелия из водорода — единственного известного источника энергии, который мог бы обеспечить жар Солнца. Для многих это стало бы серьезным ударом. Однако Эддингтон был убежден, что он на правильном пути. Тем, кто с пренебрежением относился к его идее и утверждал, что Солнце недостаточно горячее для реакции синтеза, он отвечал: «Идите поищите место погорячее» (подразумевалось: «Идите к черту!»).

Спасение пришло с неожиданной стороны: от квантовой теории. Или точнее, от принципа неопределенности Гейзенберга. В 1929 году, в Берлине, английский физик Роберт Аткинсон (1898–1982) и немецкий физик Фриц Хоутерманс (1903–1966) сосредоточились на проблеме: каким образом два ядра внутри Солнца могут подобраться друг к другу настолько близко, что испытают сильное взаимодействие и в результате схлопнутся? Они наглядно представили эту проблему так: когда одно ядро придвигается все ближе и ближе к другому, оно испытывает все более сильное отталкивание, и наконец, когда расстояние совсем невелико, отталкивание внезапно сменяется неодолимой силой притяжения. Это все равно что толкать шар вверх по склону холма, который становится все круче и круче, и вдруг, на самой вершине, обнаруживается шахта, в которую шар и проваливается. С ядром атома внутри Солнца весьма похожая ситуация: это ядро, как и шар, из последних сил толкают к вершине холма; казалось бы, вершина близко, но сил уже нет вовсе, и шар, не докатившись до шахты, никуда не проваливается.

Во всяком случае, такой эта ситуация виделась большинству физиков старой школы. Но принципиально важно то, что Аткинсон и Хоутерманс поняли: в квантовой теории все по-другому. Вспомним: с каждой частицей ассоциирована квантовая волна и квадрат высоты квантовой волны в любой точке дает нам вероятность обнаружения частицы в этой точке. Следовательно, шар в нашем примере не локализован в одном месте, а некоторым образом расходится в пространстве, как волна на озере. Поэтому, даже если он находится на склоне холма ниже вершины, его квантовая волна уходит вглубь и пронзает стенку шахты, пробуренной сквозь холм. Малейшего намека на то, что квантовая волна проникла в шахту, достаточно, чтобы дать шару крохотную вероятность там обнаружиться, — другими словами, существует крохотная вероятность, что шар исчезнет со склона холма и появится в шахте, словно попав туда по туннелю, — «туннелирует» в недра холма.

Этот «туннельный эффект» — всего лишь следствие принципа неопределенности Гейзенберга, а сам этот принцип, в свою очередь, — следствие расходимости квантовых волн и невозможности привязать какую бы то ни было частицу к конкретной точке. Аткинсон и Хоутерманс догадались: вот он, отсутствующий решающий ингредиент, который позволил бы ядрам гелия синтезироваться из ядер водорода внутри Солнца при температурах в 1000 раз более низких, чем те, которые представлялись необходимыми. Теперь двум физикам оставалось только прояснить детали этого процесса.