1. Почему «обидели» температуру? Ошибка Фаренгейта. Порядок и беспорядок. Когда путь вниз труднее подъема. Ледяной кипяток. Существуют ли на Земле «холодные жидкости»?

1. Почему «обидели» температуру? Ошибка Фаренгейта. Порядок и беспорядок. Когда путь вниз труднее подъема. Ледяной кипяток. Существуют ли на Земле «холодные жидкости»?

Длину мы измеряем в метрах, массу — в граммах, время в секундах, а температуру в градусах.

Расстояние между городами исчисляется в десятках и сотнях километров, высота здания в метрах, а межатомные расстояния в стомиллионных долях сантиметра. Но во всех случаях эти величины положительные.

Выпуск продукции промышленных предприятий планируется в тоннах, в повседневной жизни мы имеем дело с килограммами и граммами. А для того чтобы выразить в граммах массу мельчайшей материальной частицы электрона, мы после запятой, перед первой значащей цифрой, должны написать 26 нулей. И все же это величина положительная.

И если вы прочтете в задачнике, что «расстояние между пунктом А и пунктом Б равно минус 5 метров», то сразу догадаетесь, что знак «минус» здесь опечатка.

Такой же бессмысленностью в обыденной жизни представляются «отрицательный вес» и «отрицательное время». Но если вы скажете, к примеру, что температура воздуха равна минус 10 градусов, то этим вы никого не удивите.

В чем же здесь дело?

Если мы говорим, например, положительный человек, то это самый большой комплимент. Наоборот, отрицательные явления надо изживать.

Почему же так «обидели» температуру? Мы ей приписываем как положительные, так и отрицательные значения, в то время как другим физическим величинам только положительные.

Справедливо ли это?

Когда мы измеряем длину с помощью линейки или рулетки, взвешиваем предмет или запускаем стрелку секундомера, то при отсчете на шкале прибора или приспособления мы исходим из отметки «нуль», соответствующей наименьшему возможному значению величины. Поэтому во всех трех случаях значения измеряемых величин не могут быть меньше нуля.

Когда же впервые разрабатывались температурные шкалы, никто даже приблизительно не знал, какая может быть наименьшая температура, то есть с какой точки нужно начинать отсчет.

В 1714 году немецкий физик — самоучка Габриель Фаренгейт за «нуль», то есть за низшую точку температурной шкалы, принял температуру смеси снега и нашатыря. За вторую опорную точку Фаренгейт принял, как он утверждал, нормальную температуру человеческого тела. Интервал между этими двумя точками он разбил на 100 равных делений. Каждое такое деление получило название «градус Фаренгейта», обозначаемый так: °Р (по первой букве фамилии ученого Fahrenheit).

По шкале Фаренгейта точка таяния льда +320F, а точка кипения воды —212°F. Эта шкала до сих пор употребляется в Англии и США.

В 1742 году шведский астроном и физик Андерс Цельсий предложил шкалу термометра, в которой интервал между точкой таяния льда и точкой кипения воды был разбит на 100 равных частей, каждая из которых получила название «градус Цельсия», обозначаемый так: °С (по первой букве фамилии ученого Celsius). Точка таяния льда была принята за 0 °C, а точка кипения воды за 100 °C.

Эта шкала находит широкое применение в СССР и многих других странах.

Как перейти от температуры в градусах по шкале Фаренгейта к температуре в градусах по шкале Цельсия?

Расстояние между точкой таяния льда и точкой кипения воды на шкале Фаренгейта составляет 212—32= 180 градусов, а на шкале Цельсия только 100 градусов. Следовательно, один градус Фаренгейта равнозначен 5/9 градусам Цельсия. Кроме того, точка таяния льда на шкале Фаренгейта сдви — нута вверх на 32 градуса по сравнению со шкалой Цельсия.

Отсюда легко можно вывести формулу перевода градусов Фаренгейта в градусы Цельсия: t°С = 5/9 (n°F — 32), где введены следующие обозначения: t°С — температура в градусах по шкале Цельсия; n°Р — температура в градусах по шкале Фаренгейта.

А теперь мы предлагаем читателю определить, какую ошибку допустил Фаренгейт при разработке своей шкалы. Напомним, что Фаренгейт принял за нормальную температуру человеческого тела 100°F.

Подставив эту величину в приведенную выше формулу, мы обнаружим, что она соответствует 37,8 °C.

Но ведь с такой температурой врач немедленно отправит вас в постель!

В действительности нормальная температура человеческого тела не 100°F, а примерно 98°F.

Наличие двух разных температурных шкал создает определенные неудобства, особенно в наш век, когда контакты между людьми разных стран и континентов становятся все более тесными.

Однажды в гостинице одного из городов Европы остановился американский промышленник. Назовем его мистер Смит.

По приезде мистер Смит (он был человек предусмотрительный) вынул из чемодана взятый из дому привычный для него термометр Фаренгейта.

Однако в спешке (прибыло еще много других гостей) горничная перепутала и установила термометр Фаренгейта за окном соседнего номера, где остановился турист из Парижа — месье Поль, а в номере американца остался числящийся по описи гостиницы термометр Цельсия.

Вот что из этого вышло.

Представьте себе утро погожего дня ранней весны. Хотя столбик термометра еще стоит на нуле по Цельсию, под солнечными лучами уже начинает подтаивать. На выходе из гостиницы остановились двое.

Один из них — обливающийся потом американец, облаченный в тяжелую шубу. Он закутал свое лицо так, что виднеется только кончик носа. Рядом подпрыгивает, стуча от холода зубами, француз. Он оделся так, будто в знойный день собрался на пляж.

Этому предшествовали следующие события.

Проснувшись, мистер Смит первым делом взглянул на термометр (он был уверен, что это термометр Фаренгейта, а на самом деле это был, как мы уже знаем, термометр Цельсия).

«Брр, какой ужасный мороз», — подумал американец: столбик термометра стоял на отметке 0° (используя приведенную выше формулу, легко подсчитать, что 0° по Фаренгейту соответствует минус 18° по Цельсию).

Естественно, мистер Смит экипировался соответствующим образом.

В то же самое время месье Поль, который не подозревал, что за окном его номера установлен термометр Фаренгейта, воскликнул:

— Какая тропическая жара, черт побери!

Термометр показывал плюс 32 градуса.

Разумеется, подобные казусы в обыденной жизни бывают не так уж часто. Однако отсутствие объективной температурной шкалы создавало немалые трудности при проведении исследований, связанных с измерением температуры.

Французский химик и физик Жозеф Гей — Люссак в 1802 году обнаружил интересную зависимость. Оказалось, что объем данной массы газа при постоянном давлении изменяется прямо пропорционально изменению температуры. При этом каждый раз при изменении температуры газа на 1 °C объем газа изменяется на одну и ту же величину независимо от природы газа, а именно на 1/273 его объема при 0 °C.

Так в физику вошел закон Гей — Люссака.

Этот закон позволил сделать интересные выводы.

Представьте себе следующий воображаемый опыт. Вы имеете некоторый объем газа, находящегося под постоянным давлением, и охлаждаете его начиная от 0 °C.

При охлаждении ка 1 °C объем газа уменьшается на 1/273 часть его первоначального объема. Вы охлаждаете газ еще на 1 °C, и уменьшение его объема составляет уже 2/273 части первоначального объема, и т. п. Наконец, при охлаждении на 273 °C… Но стоп! Мы слишком увлеклись. Ведь при охлаждении на 273 °C объем газа вообще должен был исчезнуть.

Значит, — 273 °C является наименьшей температурой, к которой можно подойти сколь угодно близко, но никогда нельзя достичь. Следовательно, естественно выбрать за исходную точку температуры, то есть за абсолютный нуль температуры, именно —273 °C.

Так возникла идея шкалы абсолютной температуры.

Но следует заметить, что при достаточно низкой температуре газ начинает сжижаться и закон Гей-Люссака не применим. В этом смысле наш воображаемый опыт не вполне корректен.

Более строгое доказательство того, что ни одно тело не может быть охлаждено ниже абсолютного нуля, основанное на втором законе термодинамики, принадлежит английскому физику Уильяму Томсону (лорду Кельвину), который в 1848 году ввел в науку понятие об абсолютной температуре и абсолютную шкалу температур.

Поэтому шкалу абсолютной температуры принято называть шкалой Кельвина или термодинамической температурной шкалой, а температуру, определяемую по этой шкале, — термодинамической.

Последующие измерения позволили так лее уточнить значение абсолютного нуля температуры. Оно оказалось равным —273,15 °C.

В Международной системе единиц измерения физических величин, принятой международным форумом — XI Генеральной конференцией по мерам и весам в 1960 году, одной из шести основных единиц является единица термодинамической температуры — кельвин, обозначаемая буквой К (устаревшее название «градус Кельвина» или °К). Один кельвин равен одному градусу Цельсия.

Для того чтобы градусы Цельсия перевести в кельвины, достаточно к числу градусов Цельсия добавить 273,15. Следовательно, температура таяния льда составляет 273,15 К, а точка кипения воды 373,15 К.

Удобство термодинамической температурной шкалы заключается в первую очередь в отсутствии отрицательных температур. Эта шкала широко используется при научных исследованиях и в технике.

В повседневной жизни мы пока пользуемся шкалой Цельсия, так как к большим числам, в которых выражается температура в кельвинах, сразу привыкнуть трудно.

Вполне очевидно, недалеко время, когда шкала Кельвина станет единой, как это предусмотрено международными соглашениями.

Понятие абсолютной температуры было введено в науку в середине прошлого века. Однако прошло свыше ста лет, прежде чем шкала Кельвина получила официальное признание.

Почему так получилось?

В температурной шкале Цельсия нуль вполне ощутимая точка. Тело, охлажденное до такой температуры, вы можете потрогать рукой.

Абсолютный нуль температуры выведен на основании теоретических умозаключений, подобно тому как случается, что астроном «вычисляет» далекую планету еще до того, как ее удается обнаружить с помощью оптических приборов.

Чтобы приблизиться к абсолютному нулю, нужно было получить температуру гораздо ниже, чем в самой холодной точке нашей планеты.

Более двухсот семидесяти градусов отделяет область абсолютного нуля температуры от нуля градусов Цельсия.

Много это или мало?

Повышать температуру на сотни и даже тысячи градусов человек научился еще во времена глубокой древности, пожалуй начиная с того момента, когда он впервые добыл огонь.

Техникой получения низких температур человек овладел в результате долгого пути исторического развития. Спуститься «вниз» по температурной шкале оказалось значительно труднее, чем подняться «вверх».

…Если у вас в комнате все вещи находятся в определенном порядке, то легко можно найти нужный предмет.

Однако если вы, вернувшись из школы, бросите портфель куда попало, а переодевшись, не уложите аккуратно вашу одежду в шкафу, разбросаете в беспорядке по комнате, то вам придется затратить немало времени для поиска нужной вещи.

Устроить беспорядок проще всего. Гораздо труднее восстановить порядок.

Существует общий закон природы, согласно которому термодинамические процессы самопроизвольно идут в направлении от более упорядоченного состояния к менее упорядоченному.

Можно привести немало примеров в подтверждение этого закона.

Если бросить в стакан с водой кусок сахара, то сахар через некоторое время растворится в воде, его молекулы распределятся по всему объему стакана равномерно. Вы можете ждать практически сколь угодно долго, но раствор сам по себе не разделится на сахар и воду.

При повышении температуры кристаллы превращаются в жидкость, а затем в газ.

В твердом теле каждый атом (или молекула) занимает определенное положение в пространстве. Он может совершать колебания около положения равновесия, но далеко уйти от отведенного ему места атом, как правило, не в состоянии. В этом смысле в твердом теле существует почти идеальный порядок.

В жидкости молекулы (или атомы) «упакованы» почти так же плотно, как в твердом теле. Однако в отличие от твердого тела они не находятся здесь «на привязи»: они сравнительно легко меняют свое положение. Следовательно, в жидкости гораздо меньше порядка, чем в твердом теле.

В газах расстояние между молекулами (атомами) в среднем во много раз больше размера самих молекул. Атомы и молекулы перемещаются в пространстве с огромными скоростями. Сталкиваясь, они отскакивают друг от друга, словно бильярдные шары. Чем сильнее нагревается газ, тем беспорядочнее становится движение его молекул.

Итак, при нагревании вещества его атомы или молекулы переходят из более упорядоченного в менее упорядоченное состояние, что не противоречит естественному ходу событий. Получить высокие температуры (до десятков и сотен тысяч градусов) сравнительно легко.

Наоборот, искусственно охлаждая вещество, мы стремимся перейти от беспорядка к порядку. А природных резервуаров глубокого холода на Земле нет.

Для получения холода люди еще во времена глубокой древности использовали испарение. Так, в Древнем Египте напитки хранились в пористых сосудах. Поры увеличивали поверхность испаряющейся жидкости, а плохая теплопроводность материала сосуда уменьшала подвод тепла извне. Все это способствовало охлаждению жидкости.

При нормальных условиях жидкость испаряется медленно. Так, если вы оставите в блюдечке немного воды, то пройдет несколько суток, прежде чем она полностью испарится.

Для того чтобы охладить вещество, необходимо ускорить процесс испарения. Природа сама подсказывает нам такую возможность.

Представьте себе, что в жаркий летний день вы выходите на берег из воды и вас обдувает порыв ветра. Вы сразу чувствуете холод. Объясняется это тем, что ветер сдувает пары жидкости, испаряющейся с вашего мокрого тела, а поэтому скорость испарения увеличивается.

Интенсивность испарения увеличивается и по мере повышения температуры жидкости. Наконец, при определенной температуре жидкость начинает кипеть.

…Если я вам предложу охладить температуру вашего тела, обдав его …кипятком, вы, наверное, с ужасом откажетесь от такого эксперимента. Между тем, оказывается, существует и холодный… кипяток.

Когда мы говорим, что вода кипит при температуре 100 °C, то подразумеваем, что этот процесс происходит при нормальном атмосферном давлении (760 миллиметров ртутного столба). С понижением атмосферного давления точка кипения воды смещается вниз по температурной шкале.

При подъеме в горы атмосферное давление снижается.

На Памире есть пик Ленина, расположенный на высоте 7134 метра над уровнем моря, где давление составляет примерно 300 миллиметров ртутного столба.

Здесь температура кипения воды приблизительно равна 75 °C. В таком кипятке сварить, например, мясо невозможно.

Впрочем, для того чтобы понизить температуру кипения воды, вовсе нет необходимости штурмовать заоблачные высоты. Достаточно поставить сосуд с водой под колпак воздушного насоса.

Откачивая пары, вы можете заставить кипеть воду при температуре значительно ниже 100 °C. Так, при давлении в 20 миллиметров ртутного столба вода закипает при комнатной температуре, а при снижении давления до 4,6 миллиметра ртутного столба можно получить «кипяток», имеющий температуру замерзания воды! Между температурой кипения воды и давлением паров жидкости не существует линейной зависимости. Так, для того чтобы понизить температуру кипения со 100 °C до 80 °C, нужно снизить давление примерно в два раза. А для дальнейшего понижения точки кипения еще на 20 °C давление нужно снизить уже почти в два с половиной раза по сравнению с предыдущим… Наконец, для понижения температуры кипения до 0 °C давление нужно уменьшить почти в четыре раза по сравнению с его величиной при 20 °C.

Между тем по мере уменьшения давления откачивать пары становится все труднее. Охлаждаясь, жидкость в конце концов затвердевает.

Разумеется, вода, замерзающая около 0 °C, непригодна для получения более низких температур.

Ледяной кипяток. Откачивая пары из?под колпака, вы можете получить кипяток, имеющий температуру замерзания воды.

Мало пригодны для этой цели и другие вещества, существующие в жидком виде при комнатной температуре.

Для получения низких температур нужны более «холодные жидкости».

Еще два столетия назад известный французский ученый Антуан Лавуазье писал:

«…Если бы мы смогли поместить Землю в некую весьма холодную область, например в атмосферу Юпитера или Сатурна, то все наши реки превратились бы в горы. Воздух (или, по крайней мере, некоторые его компоненты) перестал бы быть невидимым и превратился бы в жидкость. Превращение такого рода открыло бы возможность получения новых жидкостей, о которых мы до сих пор не имели никакого понятия».

Наиболее низкая температура воздуха, зарегистрированная в самых холодных областях земного шара, составляет —90 °C. Однако и при такой температуре не наблюдается сжижение воздуха или его компонентов.

Как практически осуществить сжижение атмосферных газов? Не посылать же на самом деле с этой целью экспедицию на Юпитер, Сатурн или в другой пункт Галактики!

Чтобы проникнуть в неведомую ранее область низких температур, надо было прежде всего решить проблему сжижения атмосферных газов в земных условиях.


Следующая глава >>