Жизнь в пространственной складке

Чары наконец рассеялись.

За свою короткую жизнь Риман успел снять заклятие, наложенное Евклидом за две тысячи лет до того. Метрический тензор Римана стал оружием, с помощью которого молодые математики могли бросить вызов «беотийцам», улюлюкающим при любом упоминании о многомерности. Тем, кто последовал по стопам Римана, стало легче высказываться о незримых мирах.

Вскоре начались исследования по всей Европе. Видные учёные взялись за популяризацию идеи для широкой публики. Герман фон Гельмгольц, вероятно, самый знаменитый немецкий физик того поколения, поражённый трудами Римана, много и подробно писал, обращаясь к широкой аудитории и рассказывая о математике разумных существ, живущих на шаре или сфере.

Согласно Гельмгольцу, эти существа, наделённые мышлением под стать нашему, независимо от нас обнаруживают, что все евклидовы постулаты и теоремы бесполезны. К примеру, на сфере сумма углов треугольника не составляет 180?. «Книжные черви», о которых первым заговорил Гаусс, теперь населяли двумерные сферы Гельмгольца. Гельмгольц писал, что «аксиомы геометрии должны меняться в зависимости от характера пространства, населённого существами, мыслительные способности которых соответствуют нашим»{14}. Но в своих «Популярных лекциях о научных предметах» (1881 г.) Гельмгольц предупреждает читателей, что визуализировать четвёртое измерение мы не можем. Он пишет, что «подобное представление так же невозможно, как невозможно рождённому слепым представить себе, что такое разные цвета»{15}.

Некоторые учёные, восхищённые элегантностью решения Римана, пытались найти физическое применение столь мощному инструменту{16}. Одни исследовали его применительно к высшим измерениям, другие обращались к более практичным и приземлённым вопросам: например, как едят двумерные существа. Чтобы двумерные люди Гаусса могли питаться, их рты должны быть обращены вбок. Но если мы нарисуем их пищеварительный тракт, то заметим, что он полностью рассекает их тело (рис. 2.5). Таким образом, в процессе еды их тела разделяются на две части. В сущности, любая трубка, соединяющая два отверстия в их теле, будет делить их на две части, никак не скреплённые друг с другом. В результате мы встаём перед трудным выбором: либо эти люди едят так, как мы, и распадаются надвое, либо подчиняются другим законам биологии.

К сожалению, передовая риманова математика опережала сравнительно отсталую физику XIX в. Физической основы, которая направляла бы дальнейшие исследования, ещё не существовало. Лишь в следующем веке физики догнали математиков. Но это не помешало учёным XIX в. строить бесконечные догадки о том, как выглядят существа из четвёртого измерения. Вскоре они осознали, что жители четвёртого измерения должны обладать почти божественными способностями.