Центральная теория: биты выбора
В предыдущих главах мы довольно подробно обсудили сильное взаимодействие и описывающую его теорию — квантовую хромодинамику, или КХД. Современная квантовая теория электричества и магнетизма — квантовая электродинамика, или КЭД, — является одновременно матерью и младшей сестрой КХД. Матерью, потому что КЭД возникла раньше и предоставила множество концепций, которые легли в основу КХД; а сестрой, потому что уравнения квантовой электродинамики являются более простым, менее устрашающим вариантом уравнений КХД. КЭД мы также довольно подробно обсудили.
В рамках обычного хода вещей главная роль сильного взаимодействия заключается в построении протонов и нейтронов из кварков и глюонов. При этом практически нейтрализуются цветные заряды, однако оставшиеся дисбалансы порождают остаточные силы, которые связывают протоны и нейтроны в атомные ядра. Электромагнитное взаимодействие связывает электроны с ядрами, создавая атомы. При этом практически нейтрализуются электрические заряды, однако оставшиеся дисбалансы порождают остаточные силы, которые связывают атомы в молекулы, а молекулы — в вещество. КЭД также описывает свет и все родственные ему формы электромагнитного излучения — радио, СВЧ, инфракрасное, ультрафиолетовое, рентгеновское и гамма-излучение.
Третьим крупным игроком в Центральной теории является слабое взаимодействие. Его роль в природе менее заметна, но также крайне важна. Слабое взаимодействие отвечает за алхимию. Точнее, оно превращает кварки различных ароматов друг в друга, а также превращает друг в друга различные виды лептонов. На рис. 17.1 слабое взаимодействие производит преобразования в вертикальном направлении. (Сильное взаимодействие производит преобразования в горизонтальном направлении.) При изменении одного из u?кварков в протоне на d?кварк протон превращается в нейтрон. Таким образом, изменения, вызванные слабым взаимодействием, преобразуют атомное ядро одного элемента в атомное ядро другого. Реакции, основанные на «алхимии» слабого взаимодействия (более «важным» названием которой является «ядерная химия»), могут сопровождаться высвобождением гораздо большей энергии, чем у обычных химических реакций. Звезды живут на энергии, получаемой в результате систематического преобразования протонов в нейтроны.
Прежде чем углубляться в детали устройства ядра Центральной теории (сильного, электромагнитного и слабого взаимодействий), я сделаю несколько замечаний о том, что (на время!) придется обойти вниманием, — о гравитации и массе нейтрино.
• Как мы уже обсуждали, кажущаяся слабость гравитации, вероятно, больше связана с нашим восприятием, чем с собственно гравитацией. И, как мы увидим в следующих нескольких главах, Природа побуждает нас включать гравитацию вместе с другими видами взаимодействий в качестве равноправного партнера, участвующего в объединении.
На практике нет никаких трудностей для включения гравитационных взаимодействий в Центральную теорию. Для этого существует уникальный и простой способ, и он работает. (Для экспертов: примените действие Эйнштейна — Гильберта к метрическому полю, минимизируйте взаимодействие материальных полей и сделайте квантование в плоском пространстве.) В своей повседневной работе астрофизики постоянно используют общую теорию относительности наряду с остальными компонентами Центральной теории, и вполне успешно. Это касается и тех, кто использует GPS.
Короче говоря, обычная практика отделения гравитации от других составляющих Центральной теории является удобной, но, вероятно, поверхностной.
• То, что нейтрино обладает ненулевой массой, было установлено в 1998 году, однако намеки на это появились еще в 1960-е годы. Значения масс нейтрино очень малы. Масса самого тяжелого из трех типов нейтрино не превышает одной миллионной массы следующей легчайшей из известных нам частиц — электрона. Нейтрино известны своей неуловимостью и призрачностью. Около 50 триллионов этих частиц ежесекундно проходят сквозь тело каждого из нас, но мы этого не замечаем. Джон Апдайк написал о нейтрино стихотворение, которое начинается такими словами:
Нейтрино, крохотные тени,
Отринув массу и заряд,
Не признают закон общений,
Взаимодействий и преград.
Они по всей Вселенной шарят,
Не поступаясь прямизной.
Для них — пустой надутый шарик
Трилльоннотонный шар земной[49].
Благодаря героическим усилиям экспериментаторы смогли довольно подробно изучить свойства нейтрино[50].
Центральная теория прекрасно уживается с идеей о нулевой массе нейтрино, которая очень естественно встраивается в ее структуру. Для учета ненулевых масс нейтрино мы должны добавить новые частицы с необычными свойствами, для которых нет никакой другой мотивации или доказательств. Когда мы расширим Центральную теорию, чтобы получить единую теорию взаимодействий, все будет выглядеть совсем иначе. Тогда мы признаем новые частицы в качестве родственников — блудных детей, вернувшихся в семью. А их необычное поведение намекнет на их приключения в далеких краях.
Есть еще две сложности, которые я собираюсь приукрасить. Они представляют собой отклонения от моего главного сообщения, но не упомянуть о них было бы неправильно. Пожалуйста, не позволяйте этим поверхностным осложнениям отпугнуть вас. Признавая их существование, мы не позволим им исказить наше видение.
• Одной из сложностей являются массы и смешение калибровочных бозонов. В базовых уравнениях присутствует три симметричные группы калибровочных полей. Есть восемь цветных глюонных полей, с которыми вы уже познакомились. Еще три связаны с симметрией слабого взаимодействия. Они называются W+, W? и W0, и все они симметричны друг другу. Наконец, есть один изолированный калибровочный бозон B0 с «гиперзарядом». Сверхпроводимость Сетки придает ненулевые массы частицам, созданным W+ и W?, а также вполне определенной смеси W0 и B0. Возмущения в этой смеси производят массивные частицы, называемые Z?бозонами. Возмущения в другой комбинации W0 и B0 (для экспертов: ортогональная комбинация) остаются безмассовыми. Эта безмассовая комбинация W0 и B0 представляет собой фотон.
Подведем итог: c точки зрения математики симметрии поля W0 и B0 являются наиболее естественными. Однако возмущения с определенной массой, когда принимается во внимание сверхпроводимость Сетки, подразумевают смешение W0 и B0. Одним из типов возмущения является Z0?бозон с ненулевой массой; другим типом будет фотон с массой, равной нулю.
Иногда говорят, что Центральная теория объединяет электромагнетизм и слабое взаимодействие. Это вводит в заблуждение. По-прежнему существует два различных вида взаимодействия, связанных с различными видами симметрии. В Центральной теории они смешиваются, а не объединяются.
• Другую сложность представляют массы и смеси кварков и лептонов. Существует три различных «семейства». Таким образом, кроме самого легкого семейства, включающего u? и d?кварки, электрон е и электронное нейтрино ?e, существует два более тяжелых. Ко второму семейству относятся очарованный и странный кварки с и s, мюон ? и мюонное нейтрино ??. Наконец, третье семейство содержит истинный и прелестный кварки t и b, тау-лептон ? и тау-нейтрино ??.
Как и калибровочные бозоны, все эти частицы не имели бы массы, если бы не сверхпроводимость Сетки. Сверхпроводимость Сетки придает им массу[51], позволяет более тяжелым смешиваться и, таким образом, сложными способами распадаться на более легкие. Эти массы и смеси чрезвычайно интересуют экспертов, и понимание их значений является нерешенной задачей теоретической физики. Кроме того, непонятым остается более простой вопрос: почему существует именно три семейства?
Поскольку у меня нет каких-либо соображений по этому поводу, я не буду тратить время на отстаивание тех или иных подробностей. Это бы только отвлекло нас от хороших идей, которые мне хочется обсудить. Поэтому я постараюсь по возможности обойтись без лишних сложностей. Роман Толстого «Анна Каренина» начинается словами «Все счастливые семьи счастливы одинаково». В таком случае мы остановимся только на одном семействе.
Ух! Сложное это дело — докапываться до простоты. Однако после того, как мы на время отправили на чердак два странных подарка (гравитацию и массу нейтрино), избавились от путаницы, обусловленной сверхпроводимостью Сетки, и решили, что одного семейства будет достаточно, возникает четкий и лаконичный образ. Именно он представлен на рис. 17.1. Это самая суть Центральной теории.
Существует три симметрии: SU(3), SU(2) и U(1). Они соответствуют сильному, слабому и электромагнитному взаимодействию[52].
SU(3) — это симметрия между тремя видами цветного заряда, как нам уже известно. Она сопровождается восемью калибровочными бозонами, которые изменяются или реагируют на цветные заряды, и действует в горизонтальном направлении на рис. 17.1.
SU(2) — это симметрия между двумя дополнительными видами цветных зарядов. Она действует в вертикальном направлении на рис. 17.1.
Вы заметите, что каждая из частиц слева указана дважды. Каждая частица присутствует один раз в группе с индексом L и один раз — в группе с индексом R. Эти индексы относятся к «рукости», или хиральности, данных частиц: L — для левой руки, R — для правой руки. «Рукость» частицы определяется, как показано на рис. 17.3. «Леворукие» и «праворукие» частицы взаимодействуют по-разному. Этот факт называется «нарушением четности». Впервые его осознали Цзундао Ли и Чжэньнин Янг в 1956 году, и это открытие принесло им Нобелевскую премию в минимально короткие сроки — в 1957 году.
Рис. 17.3. «Рукость», или хиральность, частицы определяется направлением ее спина относительно направления ее движения. «Леворукая» частица вращается в направлении загнутых пальцев, когда большой палец левой руки указывает в направлении ее движения
Симметрия U(1) имеет дело только с одним видом заряда. Мы указываем его воздействие на различные частицы в соответствии с тем, насколько сильно и с каким знаком один ее бозон, по сути фотон, связывается с каждой из них. Маленькие цифры, расположенные рядом с каждой группой частиц, соответствуют именно этим показателям. Например, «праворукому» электрону соответствует значение –1, поскольку его электрический заряд равен –1 (в системе единиц измерения, в которой заряд протона равен +1). Самая крупная группа, состоящая из шести элементов, содержит u? и d?кварки с каждым из трех цветных зарядов. Электрический заряд u?кварков равен 2/3, в то время как d?кварки имеют электрический заряд, равный –1/3, поэтому средний электрический заряд внутри группы равен 1/6; именно это значение вы и видите.
Вот и все. Как я уже говорил, было трудно переоценить мощь и обширность сферы применения Центральной теории. На первый взгляд правила могут показаться несколько сложными, однако эти сложности ничто по сравнению, например, с правилами спряжения нескольких неправильных глаголов в латинском или французском языке. И в отличие от последних сложности Центральной теории не являются беспричинными. Они навязываются нам экспериментальными реалиями.