§ 3. Четырехмерный градиент

Следующей величиной, которую нам следует обсудить, является четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования ?/?x, ?/?y, ?/?z преобразуются подобно трехмерному вектору и называются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмерным градиентом должны быть (?/?t, ?/?x, ?/?y ?/?z), но это неверно.

Чтобы обнаружить ошибку, рассмотрим скалярную функцию, которая зависит только от х и t. Приращение ? при малом изменении t на ?t и постоянном х равно

(25.13)

С другой стороны, с точки зрения движущегося наблюдателя

Используя уравнение (25.1), мы можем выразить ?х' и ?t' через ?t. Вспоминая теперь, что величина х постоянна, так что ?x=0, мы пишем

Таким образом,

Сравнивая этот результат с (25.13), мы узнаем, что

(25.14)

Аналогичные вычисления дают

(25.15)

Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х' и t' [полученные решением уравнений (25.1)] имеют вид

Именно так должен преобразовываться четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (?/?t,?) правильным:

(25.16)

Мы его обозначим ??. Для такого ?? трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что ?? «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент скалярной функции есть четырехвектор. Если ? — настоящее скалярное (лоренц-инвариантное) поле, то ??? будет четырехвекторным полем.

Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвариант, аналогичный дивергенции в трехмерном векторном анализе. Ясно, что аналогом его должно быть выражение ??b?, где b? — векторное поле, компоненты которого являются функциями пространства и времени. Мы определим дивергенцию четырехвектора b?=(bt, b) как скалярное произведение ?? на b?:

(25.17)

где ?·b — обычная трехмерная дивергенция вектора b. Не забывайте внимательно следить за знаками. Один знак минус связан с определением скалярного произведения [формула (25.7)], а другой возникает от пространственных компонент ?? [формула (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.

Остановимся теперь на физическом примере, в котором появляется четырехмерная дивергенция. Ею можно воспользоваться при решении задачи о полях вокруг движущегося проводника. Мы уже видели (гл. 13, § 7, вып. 5), что плотность электрического заряда ? и плотность тока j образуют четырехвектор j?=(p, j). Если незаряженный провод переносит ток jx, то в системе отсчета, движущейся относительно него со скоростью v (вдоль оси х), в проводнике наряду с током появится и заряд [который возникает согласно закону преобразований Лоренца (25.1)]:

Но это как раз то, что мы нашли в гл. 13. Теперь нужно подставить эти источники в уравнение Максвелла в движущейся системе и найти поля.

Закон сохранения заряда в четырехмерных обозначениях тоже принимает очень простой вид. Рассмотрим четырехмерную дивергенцию вектора j? :

(25.18)

Закон сохранения заряда утверждает, что утекание тока из единицы объема должно быть равно отрицательной скорости увеличения плотности заряда. Иными словами,

Подставляя это в (25.18), получаем очень простую форму закона сохранения заряда:

(25.19)

Благодаря тому что ??j? — инвариант, равенство его нулю в одной системе отсчета означает равенство нулю и во всех других. Таким образом, если заряд сохраняется в одной системе, он будет сохраняться и во всех других системах координат, движущихся относительно нее с постоянной скоростью.

В качестве последнего примера рассмотрим скалярное произведение оператора градиента ?? на себя. В трехмерном пространстве такое произведение дает лапласиан

Что получится для четырех измерений? Вычислить это очень просто. Следуя нашему правилу скалярного произведения, находим

Этот оператор, представляющий аналог трехмерного лапласиана, называется даламбертианом и обозначается специальным символом

(25.20)

По построению он является скалярным оператором, т. е., если подействовать им, скажем, на четырехвекторное поле, возникает новое четырехвекторное поле. [Иногда даламбертиан определяется с противоположным по отношению к (25.20) знаком, так что при чтении литературы будьте внимательны!]

Итак, для большинства величин, перечисленных нами в табл. 25.1, мы нашли их четырехмерные эквиваленты. (У нас еще нет эквивалента векторного произведения, но его нахождение мы оставим до следующей главы.) А теперь соберем в одно место все важнейшие результаты и определения и составим еще одну таблицу (табл. 25.2); она поможет вам лучше запомнить, что во что переходит.