Архимед

Архимед

Архимед родился в 287 г. до н. э. в Сиракузах, на острове Сицилия. Сицилия была дальним западным форпостом греческой культуры. Здесь жил и умер Эмпедокл, сюда приезжал Платон осуществлять свои идеи об идеальной структуре рабовладельческого государства, и еще в годы детства Архимеда эпирский царь Пирр вел здесь войну с римлянами и карфагенянами, пытаясь создать новое греческое государство. В этой войне отличился один из родственников Архимеда—Гиерон, ставший в 270 г. до н. э. правителем Сиракуз. Отец Архимеда, астроном Фидий, был одним из приближенных Гиерона, и это открыло ему возможность дать сыну хорошее образование. Но Архимед не поехал в Афины, а отправился в Александрию, где у него сложились дружеские отношения с астрономом Кононом, математиком и географом Эратосфеном, с которыми он поддерживал в дальнейшем научную переписку.

Архимед вернулся в Сицилию зрелым математиком, однако первые его труды были посвящены механике Интересно отметить, что Архимед в своих математических работах нередко опирается на механику. Он использует принцип рычага при решении ряда геометрических задач. Вообще говоря, Архимед был представителем математической физики, вернее, физической математики.

Принцип рычага и учение о центре тяжести являются важнейшими (наряду с законом Архимеда) научными достижениями Архимеда в области механики.

Архимед был не только математиком и механиком. Он был одним из крупнейших инженеров своего времени, конструктором машин и механических аппаратов. Он изобрел машину для поливки полей («улитку»), водоподъемный винт и особенно успешно разрабатывал конструкции военных машин. Это был первый ученый, уделявший много внимания и сил военным задачам. К этому его побуждало политическое положение Сиракуз. Архимеду было 23 года, когда началась 1-я Пуническая война между Римом и Карфагеном, и 69 лет, когда началась 2-я Пуническая война, во время которой он и погиб (212 г. до н. э.).

В борьбе между Римом и Карфагеном вопрос об обладании Сицилией занимал важное место. Оба могущественных государства прилагали немало усилий, чтобы склонить на свою сторону Сиракузы. Гиерон и его преемники стремились всячески сохранить независимость, но понимали, что военное столкновение с Римом неизбежно, и готовились к грядущей тяжелой военной схватке. В оборонительных планах Сиракуз военная техника занимала видное место, и инженерный гений Архимеда сыграл при этом огромную роль.

Под руководством Архимеда сиракузяне построили множество машин различного назначения. Когда римляне высадили в Сицилии сухопутное войско под предводительством Аппия Клавдия, а под стенами Сиракуз появился римский флот под командованием Марцелла, то наступила очередь Архимеда.

Предоставим слово греческому историку Плутарху, написавшему биографию Марцелла: «При двойной атаке римлян (т е. с суши и с моря. - П. К.) сиракузцы онемели, пораженные ужасом. Что они могли противопоставить таким силам, такой могущественной рати? Архимед пустил в ход свои машины Сухопутная армия была поражена градом метательных снарядов и громадных камней, бросаемых с великой стремительностью. Ничто не могло противостоять их удару, они все низвергали пред собой и вносили смятение в ряды Что касается флота — то вдруг с высоты стен бревна опускались, вследствие своего веса и приданной скорости, на суда и топили их. То железные когти и клювы захватывали суда, поднимали их в воздух носом вверх, кормою вниз и потом погружали в воду А то суда приводились во вращение и, кружась, попадали на подводные камни и утесы у подножия стен. Большая часть находя щихся на судах погибала под ударом Всякую минуту видели какое-нибудь судно поднятым в воздухе над морем Страшное зрелище!...»

Попытка Марцелла противопоставить технике Архимеда римскую военную технику потерпела крах. Архимед разбил громадными камнями осадную машину «самбуку», и Марцеллу пришлось увести флот в безопасное место, дать приказ об отходе сухопутной армии и перейти к длительной осаде. Архимед погиб вместе с родным городом, убитый римским солдатом при взятии Сиракуз. Таким образом, Архимед вошел в историю как один из первых ученых, работавших на войну, и как первая жертва войны среди людей науки.

Остановимся на результатах его исследований в области физики. Основные научные проблемы, выдвинутые развитием техники древнего мира, были в первую очередь проблемами статики. Строительная и военная техника была теснейшим образом связана с вопросами равновесия и подво дила к выработке понятия центра тяжести. В основе строительной и военной техники лежал рычаг Рычаг позволял поднимать большие тяжести, преодолевать значительные сопротивления, затрачивая относительно небольшие усилия Он и основанные на нем машины помогли человеку «перехитрить» природу. Отсюда и пошло название «механика». Греческое слово «механе» означало орудие, приспособление, осадную или театральную машину, а также уловку, ухищрение.

В течение многих веков механика рассматривалась как наука о простых статических машинах. Ее основой была теория рычага, изложенная Архимедом в сочинении «О равновесии плоских фигур». В основе этой теории лежат следующие постулаты:

«1 Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести на большей длине.

2. Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-нибудь прибавлно, то они не будут уравновешиваться, но перевесит та тяжесть, к которой было прибавлено.

3. Точно так же если от одной из тяжестей будет отнято что-нибудь, то они не будут уравновешиваться, но перевесит та тяжесть, от которой не было отнято».

Не подлежит сомнению, что постулаты проверены длительной технической практикой, которая делает их «очевидными». Основываясь на этих постулатах, Архимед доказывает следующие теоремы: «Соизмеримые величины уравновешиваются на длинах, которые будут обратно пропорциональны тяжестям». И далее: «Если величины будут несоизмеримы, то они точно так же уравновесятся на длинах, которые обратно пропорциональны этим величинам». В этих предложениях содержится первая точная формулировка закона рычага. При этом под «величинами» следует понимать модули сил, действующих на рычаг.

Кроме закона рычага, в книге «О равновесии плоских фигур» содержатся определения центров тяжести треугольника, параллелограмма, трапеции, параболического сегмента, трапеции, боковые стороны которой являются дугами парабол. Понятие центра тяжести предполагается известным, и в начале книги приводятся постулаты о центрах тяжести (при совмещении конгруэнтных фигур центры тяжести совмещаются; центры тяжести подобных фигур подобно же расположены; у фигур с выпуклым периметром центр тяжести находится внутри фигуры). Само же определение центра тяжести, данное Архимедом, встречается в сочинении Паппа Александрийского, жившего в конце III в. н. э. Это определение гласит: «Центром тяжести каждого тела является некоторая расположенная внутри его точка —такая, что если за нее мысленно подвесить тело, то оно остается в покое и сохраняет первоначальное положение». Чтобы прийти к этому определению, понадобился длительный практический опыт, обобщением которого и явилась механика Архимеда.

Как мы уже говорили, Архимед использовал полученные им в механике результаты для формулировки математических выводов. Так, он использует закон рычага при вычислении площади параболического сегмента и объем шара. Эти вычисления Архимеда являются начальным этапом интегрального исчисления.

Переходим теперь к знаменитому закону Архимеда. Этот закон изложен в сочинении «О плавающих телах»

Сиракузы были портовым и судостроительным городом. Вопросы плавания тел ежедневно решались практически, и выяснить их научные основы, несомненно, казалось Архимеду актуальной задачей. Правда, существует легенда, что Архимед пришел к своему закону, решая задачу, содержит ли золотая корона, заказанная Гиероном мастеру, посторонние примеси или нет. Но задача, поставленная Гиероном, требовала знания объема короны и объема золота того же веса и, собственно, закона Архимеда для своего решения не требовала.

Вероятно, мотивы работы Архимеда были все же более глубокими. Он разбирает не только условия плавания тел, но и вопрос об устойчивости равновесия плавающих тел различной геометрической формы. Научный гений Архимеда в этом сочинении, оставшемся, по-видимому, незаконченным, проявляется с исключительной силой. Полученные им результаты получили современную формулировку и доказательство только в XIX в.

Сочинение Архимеда начинается описанием природы жидкости, которая, по Архимеду, такова, «что из ее частиц, расположенных на одинаковом уровне и прилегающих друг к другу, менее сдавленные выталкиваются более сдавленными, и что каждая из ее частиц сдавливается жидкостью, находящейся над ней, по отвесу». Это определение позволяет Архимеду сформулировать основное положение: «Поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли».

Таким образом, Архимед считает Землю шаром и поверхность тяжелой жидкости, находящейся в равновесии в поле тяжести Земли, сферической. Он доказывает далее, что тела одинакового удельного веса с жидкостью (он называет их «равнотяжелыми с жидкостью») погружаются настолько, что их поверхность совпадает с поверхностью жидкости. Более легкое тело погружается настолько, что объем жидкости, соответствующий погруженной части тела, имеет вес, равный весу всего тела. Путем логических рассуждений Архимед приходит к предположениям, содержащим формулировку его закона:

«VI. Тела более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела».

«VII. Тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела». В остальных предложениях первой и второй книги Архимед разбирает условия равновесия тел, плавающих в жидкости, причем тела имеют форму сферического или параболического сегмента.

Как было уже сказано, выводы, полученные Архимедом, были подтверждены и развиты математиками и механиками XIX в., установившими такие понятия, как «плоскость плавания», «поверхность сечений», «поверхность центров», «метацентр». Основы гидростатики были заложены Архимедом и лишь в конце XVI и первой половине XVII столетия были развиты Стевиным, Галилеем, Паскалем и другими учеными.

Кроме математики и механики, Архимед занимался оптикой и астрономией. Сохранилась легенда о том, что Архимед использовал в борьбе с римским флотом вогнутые зеркала, поджигая корабли сфокусированными солнечными лучами. Имеются сведения о том, что Архимедом было написано не дошедшее до нас большое сочинение по оптике под названием «Катоптрика». Из дошедших до нас отрывков, цитируемых древними авторами, видно, что Архимед хорошо знал зажигательные действия вогнутых зеркал, проводил опыты по преломлению света, знал свойства изображений в плоских, выпуклых и вогнутых зеркалах.

О занятиях Архимеда астрономией свидетельствуют рассказы о построенной им астрономической сфере, захваченной Марцеллом как военный трофей, и сочинение «Псаммит», в котором Архимед подсчитывает число песчинок во Вселенной. Сама постановка задачи представляет большой исторический интерес: точное естествознание впервые приступило к подсчетам космического масштаба, пользуясь неудобной системой чисел. Результат, полученный Архимедом, выражается в современных обозначениях числом 1063. Кроме того, в сочинении Архимеда впервые в истории науки сопоставляются две системы мира; геоцентрическая и гелиоцентрическая. Архимед указывает, что «большинство астрономов называют миром шар, заключающийся между центрами Солнца и Земли».

Архимед сообщает далее, что Аристарх Самосский предполагает мир гораздо большим. «Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается вокруг Солнца по окружности круга, расположенного посередине между Солнцем и неподвижными звездами...» Архимед интерпретирует мысль Аристарха как равенство отношения размеров мира к размерам Земли, отношению радиуса сферы неподвижных звезд к радиусу земной орбиты. Таким образом, Архимед принимает мир хотя и очень большим, но конечным, что позволяет ему довести свой расчет до конца.

Архимед—вершина научной мысли древнего мира. Последующие ученые — Герон Александрийский (1—11 вв. до н. э.), Папп Александрийский (III в н. э.) — мало что прибавили к наследию Архимеда, и их труды по механике носят компилятивный характер.

Со времен Герона и Паппа механику стали принимать как науку о простых машинах, из которых основными считались пять; ворот, рычаг, блок, клин и винт. Последние две машины основаны на свойствах наклонной плоскости, закон действия которой не был известен ни самому Архимеду, ни последующим древним и средневековым авторам.

Герон прославился как изобретатель остроумных автоматов и эолипила, первого теплового двигателя, представляющего по своей сути модель первой паровой турбины. Правда, эолипил Герона никакой полезной работы не производил и оставался забавной игрушкой. Это показывает, что преждевременные открытия не получают развития до тех пор, пока не созреют условия для их освоения и разработки. История теплового двигателя началась только в XVII в. после открытия атмосферного давления. Любопытно, что многие автоматы Герона по существу были основаны на действии атмосферного давления, хотя сам Герон, конечно, никакого представления о давлении воздуха не имел и действие широко применяемого им сифона объяснял неразрывностью водяной струи.

Следует отметить также, что Герон Александрийский впервые обосновал закон отражения света принципом наименьшего времени: световой луч отражается от зеркала таким образом, что световой путь, соединяющий источник света, зеркало и приемную точку, требует для своего прохождения наименьшего времени. Так началась история важного для оптики вариационного принципа ферма — Гамильтона...

Говоря об оптике древности, следует отметить, что древние ученые, в том числе и Архимед, сделали ряд интересных наблюдений по преломлению света и метеорологической оптике Однако точный закон преломления им не был известен. Великий астроном древнего мира Клавдий Птолемей, с удивительным искусством разработавший теорию движения планет по геоцентрической системе мира, производил довольно точные измерения углов падения и преломления света в воде, в стекле. Однако из своих данных он не вывел закон преломления и считал угол преломления пропорциональным углу падения Такой формулировкой закона преломления пользовался и Кеплер, да и сейчас в элементарных учебниках при выводах формул линз, полагая углы падения небольшими (оптика «нулевых пучков»), заменяют синусы углов самими углами.

Что касается оптических теорий древних, то в таком сложном и тонком физическом явлении, как свет, было трудно нащупать правильный подход.

Теория зрительных лучей широко использовалась Евклидом, Архимедом и Птолемеем. Атомисты выдвинули теорию «образов», отделяющихся от вещей и вызывающих в глазу зрительные ощущения. Аристотель, выступая против теории зрительных лучей, думал и о посредствующей среде, и в его неясной формулировке можно усмотреть намек на волновую теорию. Цвета, по Аристотелю, обусловлены смешением темного и светлого. Вообще физика Аристотеля широко оперирует с противоположными качествами: тепло — холод, сухость — влажность, тьма — свет. Эта «физика качеств» получила широкое распространение в эпоху средневековья.