Открытие радиоактивности

Открытие радиоактивности

Открытие рентгеновских лучей произошло 8 ноября 1895 г. Сообщение об открытии датировано 28 декабря. Более полутора месяцев ученый тщательно исследовал неведомые лучи. Ему удалось установить, что они возникают там, где стенки трубки сильно флюоресцируют под ударами катодных лучей. В понедельник 20 января 1896 г. Анри Пуанкаре на заседании Парижской Академии рассказал об открытии новых лучей, демонстрировал рентгеновские снимки и высказал предположение, что рентгеновское излучение связано с флюоресценцией и, возможно, возникает всегда в люминесцирую-щих веществах и никакой катодной трубки для получения Х-лучей не надо. Среди участников заседания был Анри Беккерель, отец и дед которого — оба физики — в свое время занимались флюоресценцией и фосфоресценцией. Беккерель решил проверить гипотезу Пуанкаре. Еще в феврале 1896 г. А. Беккерель демонстрировал действие флюоресцирующего сернистого цинка на фотопластинку, завернутую в черную бумагу. Беккерель решил использовать соли урана. Он взял из коллекции минералов своего отца двойной сульфат уранила калия. Обернув фотопластинку черной бумагой, он положил на нее металлическую пластинку причудливой формы, покрытую слоем урановой соли, и выставил на несколько часов на яркий солнечный свет. После проявления пластинки на ней было отчетливо видно изображение металлической фигуры, той самой фигуры, которая покрывалась до опыта солью урана. Повторные опыты Бекке-реля дали аналогичный результат, и 24 февраля 1896 г. он доложил академии о результатах опытов. Казалось, что гипотеза Пуанкаре полностью подтверждается. Но осторожный Беккерель решил поставить контрольные опыты. К концу февраля он приготовил новую пластинку. Но погода была пасмурной и оставалась такой до 1 марта. Утро 1 марта было солнечным, и опыты можно было возобновить. Беккерель решил, однако, проявить пластинки, лежавшие несколько дней в темном шкафу. На проявленных пластинках четко обозначились силуэты образцов минералов, лежавших на непрозрачных экранах пластинок.

Минерал без предварительного освещения испускал невидимые лучи, действовавшие на фотопластинку через непрозрачный экран. Беккерель немедленно ставит повторные опыты. Оказалось, чтo соли урана сами по себе без всякого внешнего воздействия испускают невидимые лучи, засвечивающие фотопластинку и проходящие через непрозрачные слои. 2 марта Беккерель сообщил о своем открытии.

Длинным рядом экспериментов Беккерель шаг за шагом опровергал гипотезу Пуанкаре. Оказалось, что лучи могут испускать только соединения урана— это «урановые лучи», или «лучи Беккереля», как их потом стали называть. Они способны ионизировать воздух и разряжать заряженный электроскоп. Способность урана испускать лучи не ослабевала месяцами. 18 мая 1896 г. Беккерель со всей определенностью констатировал наличие этой способности у урановых соединений и описал свойства излучения. Но чистый уран оказался в распоряжении Беккереля только осенью, и 23 ноября 1896 г. Беккерель сообщил о свойстве урана испускать невидимые «урановые лучи» вне зависимости от его химического и физического состояния.

В 1897 г. Беккерель продолжает изучать открытые им лучи. В конце этого года в изучение нового явления включаются Мария Склодовская и ее муж Пьер Кюри. В этом же году происходит и другое важное открытие. В лаборатории Кавендиша в Кембридже решается загадка катодных лучей Спор Герца, Ленарда и других немецких физиков с Круксом и другими сторонниками корпускулярной природы катодных лучей решается в пользу сторонников последней концепции. Доказал корпускулярную природу катодных лучей молодой директор лаборатории Кавендиша Джозеф Джон Томсон.

Д. Д. Томсон. Джозеф Джон Томсон родился 18 декабря 1856 г. в. Манчестере. Здесь, в Манчестере, он окончил Оуэн-колледж, а в 1876—1880 гг. учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж), где когда-то профессором был Исаак Ньютон. В январе 1880 г. Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории. В это время директором лаборатории был лорд Рэлей. При Рэлее значительно увеличилось число студентов, занимавшихся научными исследованиями, увеличился штат преподавателей, за счет пожертвований Рэлея и его друзей лаборатория по поднялась приборами.

22 декабря 1884 г., после ухода Рэлея, 27-летний Томсон советом избирателей был назначен третьим профессором Кавендишской лаборатории. Важные перемены происходят в том-соновский период. В 1887 г. значительное число книг Максвелла было передано лаборатории. Они образовали ядро Кавендишской библиотеки. В 1890 г. была учреждена Максвеллов-ская стипендия из средств, завещанных университету миссис Максвелл. Стипендия давалась на три года наиболее одаренным студентам-исследователям. В 1888 г. Томсон основал классы-практикумы для студентов-медиков. Это явилось причиной резкого увеличения числа студентов, работавших в лаборатории. Временно пришлось перевести медицинские классы в старые комнаты-анатомички до тех пор, пока в 1896 г. не был открыт южный флигель лаборатории. Но и этого оказалось недостаточно, так как в 1895 г., по инициативе Д. Д. Томсо-на, в Кембридже произошла реформа, согласно которой в лабораторию стали приходить выпускники других университетов. Специальная комиссия определяла способность пришедших проводить научные исследования. После двух лет работы в Кембридже они получали степень бакалавра и удостоверение исследователя. Студенты-исследователи из всех стран мира приезжали в Кембридж. Среди приехавших были Э. Резерфорд из Новой Зеландии, Таунсенд из Ирландии, Ланжевен из франции, Бородовский из России, Зелени из США, Ч. Вильсон из Австралии и много других. С каждым годом исследователей из других стран приезжало все больше и больше. Требовалось новое расширение лаборатории. Рэлей в 1906 г. большую часть своих доходов пожертвовал на строительство левого крыла Кавендишской лаборатории. Новое расширение потребовало, в свою очередь, еще большего увеличения штата и совершенствования методов обучения.

В 1884 г. выходит «Практическая физика» Глазебрука и Шоу, а в 1896 — «Записки лаборатории по элементарной практической физике». Эти книги обобщили ценный опыт лаборатории по проведению практических занятий по общей физике, став главным руководством для работы студентов. Наиболее важным в работе со студентами-исследователями Томсон считал поддержание в них творческого энтузиазма. В послании Британской Ассоциации ori с убежденностью констатировал, что отсутствие энтузиазма—наиболее частая причина неудач. Томсон также предупреждал всех работающих для продвижения науки о тормозящем действии на энтузиазм затянувшегося курса академического обучения. Эта идея Томсона претворялась в жизнь всей деятельностью лаборатории.

Рис. 56. Опыт Беккереля

В 1893 г. Томсон организовал Кавендишское физическое общество. На заседаниях этого общества обсуждались статьи, готовившиеся к публикации. Такие дискуссии помогали исследователям разрешать некоторые неясности, стимулировали их интерес к исследованиям.

Томсон много внимания уделял развитию мастерских лаборатории, приглашал хороших механиков, обучал их. Так, в томсоновское время работал механиком Синслайр. Как вспоминал Д. Д. Томсон, «он был хорошим механиком, но не знал стеклодувного дела. Я дал ему несколько уроков, и спустя 2—3 месяца он овладел этим делом».

Итак, в томсоновский период лаборатория становится признанной международной школой физической науки. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские ученые. Заслуги многих учеников Томсона были всемирно признаны. Нобелевской премии были удостоены И. Баркла, В. Брэгг, О. Ричардсон, Ч. Т. Вильсон, Э. Резерфорд.

Перейдем теперь к основному показателю творческой деятельности лаборатории—важнейшим научным исследованиям и в особенности к исследованиям профессора Д. Д. Томсона. При Рэлее Томсон начал свой научный путь в Кавендишской лаборатории. Первая его статья, опубликованная в 1880 г., была посвящена электромагнитной теории света. В следующем, 1881 г. появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась «Об электрических и магнитных эффектах, производимых движением наэлектризованных тел». В этой статье выражена та мысль, что «эфир вне заряженного тела является носителем всей массы, импульса и энергии». С увеличением скорости изменяется характер поля, в силу чего вся эта «полевая» масса возрастает, оставаясь все время пропорциональной энергии. Научные успехи Томсона были высоко оценены Рэлеем, и, уходя в 1884 г. с поста директора лаборатории Кавендиша, он, не колеблясь, рекомендовал своим преемником Томсона.

Открытие рентгеновских лучей обострило интерес Томсона к явлениям прохождения электричества через газы. Результатом этой коллективной работы, в которой, кроме Томсона, принимали участие молодые его ученики и сотрудники, явилась классическая монография «Прохождение электричества через газы», первое издание которой вышло в 1903 г. В ходе этих исследований был открыт электрон.

«Исследования, которые привели к открытию электрона, — писал позже Томсон в своих воспоминаниях, — начались с попыток объяснения расхождения поведения катодных лучей под действием магнитных и электрических сил». Действие магнитного поля на катодные лучи было обнаружено многими исследователями, однако в отношении действия электрического поля существовали разногласия. Одни авторы утверждали, что они наблюдали действие электрического поля на катодные лучи, другие отрицали это. Томсон показал, что это расхождение обусловлено низкой техникой откачки газа. Остатки ионизированного газа нейтрализуют влияние внешнего электрического поля. Томсон усовершенствовал технику откачки и получил заметные отклонения катодного пучка электрическим полем. Трубка Томсона с впаянными в нее пластинками конденсатора стала прообразом современной электронно-лучевой трубки.

Подвергая катодный пучок действию электрического и магнитного полей, Томсон получил возможность определить отношение е/m для катодных лучей. Это отношение оказалось независимым от природы газа в трубке и в тысячу раз большим, чем отношение е/m для водородного иона, полученное из законов электролиза. Если принять, что заряд катодной частицы равен заряду водорода, то масса катодной частицы оказывается в тысячу раз меньше массы атома водорода, самого легкого атома. Этот результат был ошеломляющим. Томсон вспоминает, с каким недоверием было встречено его сообщение в Королевском институте.

Томсон продолжал свои опыты. Он исследовал отношение е/m для частиц, вырываемых ультрафиолетовым светом, для частиц, испускаемых накаленным катодом,— всюду порядок этого отношения оказался таким же, как для катодных лучей. Эти мельчайшие частицы вещества Томсон назвал корпускулами, однако это название не удержалось. Частицы стали называться электронами. (Термин «электрон» ввел в 1891 г. английский ученый Дж. Стоней.)

Рис. 57. Метод парабол Томсона

Стало ясно, что электроны являются составными частями атомов всех веществ. Сам Томсон построил электромагнитную модель атома, предположив, что отрицательно заряженные корпускулы (электроны) располагаются определенным образом внутри положительно заряженной сферы. (Следует отметить, что такую же модель предлагал и Вильям Томсон.) Этот «атом Томсонов» был распространенной моделью атома до открытия ядра Резерфордом и модели атома Бора.

Метод Томсона имел фундаментальное значение. Он лежит в основе устройства электронно-лучевых трубок, первые модели которых были построены в 1897 г. самим Томсоном и независимо от него ф. Брауном.

Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц. Томсон научил физиков управлять электронами, и в этом его основная заслуга. В 1906 г. Д.Д.Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 г. его монография «Лучи положительного электричества» положила начало масс-спектроскопии. Развивая методику Томсона, его ученик Астон построил первый масс-спектрометр и разработал метод анализа и разделения изотопов. В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном (1868—1953) и привел к измерениям заряда электрона.

Рис. 58. Фотографии, полученные Томсоном при применении метода парабол

В лаборатории Кавендиша начала свою жизнь и знаменитая камера Вильсона, построенная учеником и сотрудником Томсона Вильсоном в 1911 г.

Таким образом, роль Д. Д. Томсона и его учеников в становлении и развитии атомной и ядерной физики очень велика. Но Д. Д. Томсон («Джи, Джи», как его называли) до конца своей жизни оставался сторонником эфира, разрабатывал модели движения в эфире, результатом которых, по его мнению, были наблюдаемые явления. Так, отклонение катодного пучка в магнитном поле он интерпретировал как прецессию гироскопа, наделяя совокупность электрического и магнитного полей вращательным моментом. Умер Д. Д. Томсон 30 августа 1940 г., в трудное для Англии время, когда над ней нависла угроза вторжения гитлеровцев.