9.2. Оценки риска погибнуть в результате столкновения небесного тела с Землей
9.2. Оценки риска погибнуть в результате столкновения небесного тела с Землей
Зная частоту ударов, мы можем рассчитать и средний промежуток времени между ударами тел данного диаметра. Для определенного тела можно оценить размер зоны разрушений и, используя данные о средней плотности населения, вычислить количество жертв от различных ударов. Разделив количество жертв на средний интервал времени между ударами, можно затем определить и среднее количество смертности за год от ударов космических объектов различного размера (как если бы человечество существовало сотни миллионов лет, не защищаясь от астероидной опасности). Это было сделано в работе [Chapman and Morrison, 1994].
Количество человеческих жертв, которые могут быть вызваны ударной волной от упавшего на Землю тела, было оценено в этой работе, исходя из средней плотности населения в мире 10 человек/км2. Сейчас, когда численность населения Земли достигла 6,5 млрд человек, средняя плотность увеличилась до 13 человек/км2, а согласно прогнозам ООН к 2050 г. население Земли достигнет 9,5 млрд человек и перестанет возрастать. Тогда плотность населения составит 15 человек/км2. Используя связь площади разрушений с энергией удара и современное значение средней плотности населения, получаем простое выражение для зависимости числа жертв N от энергии ударника:
N = 2,6 103 E2/3 k, (9.10)
где Ek — энергия в Мт. Для Тунгусского события с Ek = 15 Мт получаем N = 15 000. В действительности, как мы знаем, при взрыве над безлюдной сибирской тайгой жертв вообще не было. Отметим также, что число жертв, полученное исходя из средней плотности населения, мало по сравнению с числом жертв в Хиросиме и Нагасаки, где энергия ядерного устройства была всего лишь около 20 кт.
Полное число погибших в Хиросиме составило 68 000 (из 250 000 общего населения) на площади 25 км2, в Нагасаки — 38 000 (из 170 000 населения) на площади 18 км2. Число раненых составило 76 000 человек в Хиросиме и 21 000 в Нагасаки. Чтобы получить оценку смертности от ударных волн, мы должны исключить из числа убитых жертвы от воздействия ядерного излучения; это примерно 30 % всех жертв. Мы можем также исключить жертвы пожаров. Тем не менее, результирующее число оказалось намного больше, чем полученное выше для средней плотности населения, поскольку плотность населения в Хиросиме и Нагасаки была намного выше — 3000 и 2500 на 1 км2 соответственно. В отдельных районах земного шара эта плотность может достигать 10 000 человек/км2 (средняя плотность населения пяти районов Нью-Йорка). Поэтому при взрыве над крупным городом число жертв может достигать миллионов. Но вероятность такого события намного меньше, чем вероятность самого падения космического тела, поскольку города покрывают только 10-4 поверхности Земли. Хотя надо иметь в виду, что число больших городов и их площадь непрерывно увеличиваются, равно как и средняя плотность населения.
При увеличении размеров тела до нескольких километров и тем более десятков километров удар приводит к глобальной катастрофе, угрожающей существованию всего человечества или значительной его части. При энергии выше пороговой для глобальной катастрофы число смертей (по определению) больше 1/4 населения Земли. При энергии выше 3 105 Мт ожидаемое число смертей непосредственно от удара составляет порядка десятков миллионов, в то же время все поражающие факторы приведут к гибели 1,5 млрд человек. Эта разница отражает различия в поражаемой площади: 1 % земной поверхности при прямом действии взрыва и поражение всей поверхности при учете всех непрямых и долговременных эффектов.
Средние цифры смертности от ударов, полученные в работе [Chapman and Morrison, 1994], приведены в табл. 9.1. Существует большая неопределенность в величине пороговой энергии удара, вызывающего глобальные последствия, не только из-за сложности определения состояния природной среды после удара, но и из-за незнания эффектов воздействия экологических стрессов на биологические системы. Поэтому в табл. 9.1 приняты несколько пороговых значений энергии ударника, вызывающего глобальное воздействие. Критический размер астероида в 600 м, взятый в предположении хрупкости человеческого общества, все-таки слишком мал для глобального эффекта; более реальный критический размер — от 1,5 до 5 км. Но угрозу для цивилизации представляют тела размером от 200 м до 2 км [Воробьев, 2006], которые могут привести к остановке существующего развития человечества.
Таблица 9.1. Смертность от ударов космических тел
Относительно частые удары небольших тел с энергией в 10 Мт дают среднюю смертность около 20 человек в год. В реальности, конечно, тысячи или десятки тысяч лет проходят без существенных жертв, а затем должен произойти удар, который локально убивает тысячи человек. Удары тел размером более 10 км столь редки, что в среднем наносят урон в 50 жизней в год (5 миллиардов убитых за 100 миллионов лет). Наихудшие (с наибольшей смертностью) показатели имеют удары тел с размером в диапазоне 1,5–5 км. Естественно, что эти показатели хотя и дают некоторую полезную оценку степени астероидной опасности, в действительности весьма условны. Поэтому в этих оценках смертности не требуется высокая точность.
Умножая ежегодную вероятность погибнуть от удара космического тела (число смертей, деленное на общее количество людей) на среднюю продолжительность жизни (65 лет), можно получить среднюю вероятность смерти человека в течение его жизни от удара космического тела. Сравнение риска умереть по разным причинам, сделанное в работе [Chapman and Morrison, 1994], приведено в табл. 9.2.
Таблица 9.2. Вероятность смерти по различным причинам (в США)
В работе [Воробьев, 2006] приведены данные по гибели людей в России. В период с 2000 г. по 2005 г. среднее ежегодное число погибших людей на водных объектах составило около 15 000 (около половины при купании), при пожарах — 18 000, в дорожно-транспортных происшествиях — более 30 000. Это дает вероятность гибели на водных объектах, при пожарах и в ДТП: 1:250, 1:250 и 1:70 соответственно. Вероятность гибели при авариях воздушного транспорта в России примерно такая же, как в США. Вычисленные указанным способом шансы умереть от удара космического тела в среднем такие же, как от аварии самолета или от наводнения, и значительно ниже, чем вероятность погибнуть при пожаре или в автомобильной катастрофе. Более того, пока неизвестны случаи, чтобы кто-то погиб от удара космического тела (из рассказов очевидцев Тунгусского события можно заключить, что были смерти лишь из-за сильного психологического действия взрыва). Но можно заметить, что большое количество погибших в одном событии, например при аварии авиалайнера, обычно воспринимается как большее несчастье, чем постепенная и частая гибель людей, например в автоавариях. Гибель около 3000 людей из-за нападения террористов 11 сентября 2001 г. имела гораздо более серьезные последствия (включая экономические, политические и международные), чем то же число погибших людей в авариях на шоссе. В этом отношении удары космических тел занимают особое положение, так как могут быстро убить огромное количество людей. Различные наиболее разрушительные природные катастрофы, случившиеся в истории, несмотря на их мощь, убили лишь относительно небольшую часть всего населения: землетрясения — 2 млн человек, циклоны — 300 000, обвалы и оползни — 100 000, цунами — 100 000, вулканы — 90 000, лавины — 20 000. Удар космического тела может убить всех. Поэтому, по принятой в МЧС классификации [Воробьев и др., 1997], можно характеризовать падение астероида или кометы как чрезвычайно опасное явление (6 баллов). Человечество с течением времени все больше и больше ставит вопрос не только о выживании, но и о сохранении современной цивилизации. Поэтому отношение к астероидной опасности у разных людей может изменяться между крайними точками зрения: первая — вероятность погибнуть пренебрежимо мала, и вторая — астероидная опасность гораздо более серьезна и ужасна, чем все остальные.
Оценки риска вследствие воздействия цунами от ударов космических тел размером менее 2 км в океан были сделаны в работе [Chesley and Ward, 2006]. Учитывалась современная заселенность прибрежных районов. Оказалось, что подвержены риску пострадать от цунами, инициируемых ударами астероидов размером 100–400 м, около 5 млн человек. В среднем ударное цунами ежегодно воздействует на 182 человека и приводит к потерям инфраструктуры на 18 млн долларов. Количество жертв растет с увеличением размера ударника, достигая предельной величины? 11 млн человек при размере ударника? 1 км. Но половина риска исходит от ударников диаметром менее 300 м, которые проходят через атмосферу и ударяют в океан 1 раз в? 6000 лет. В среднем характерном сценарии цунами, производимое ударом, воздействует на? 1 млн человек и приводит к разрушению инфраструктуры на ? 100 млрд долларов.
Общая оценка риска была сделана, исходя из определения частоты ударов по Земле. В соответствии с этой частотой какое-нибудь тело из всей популяции астероидов рано или поздно столкнется с Землей. Но практический интерес представляет опасность столкновения в ближайшее время, в ближайшие десятилетия. Поскольку около 3/4 АСЗ диаметром более 1 км уже открыты (и они не опасны в ближайшее время), то риск быть застигнутыми ими врасплох снижается. В работе [Chapman, 2004] приведены оценки рисков с учетом астероидов, которые будут открыты после завершения программы Spaceguard Survey. Эти оценки показаны в табл. 9.3. Данные в столбце «общая опасность» соответствуют средним вероятностям ударов по Земле за длительный промежуток времени. Здесь среднее годовое количество смертей снижено по сравнению с табл. 9.2, так как недавние оценки снизили количество астероидов размером более 1 км и несколько повысили порог глобального воздействия. Оценки остающейся опасности от цунами в табл. 9.3 снижены в ? 10 раз, поскольку исторически благодаря предупреждению и эвакуации только ? 10 % людей, живущих в зоне затопления, погибали. (Но это не снижает остальные материальные потери.) Остающаяся опасность, с учетом открытых и каталогизированных тел, при среднем пороге общей опасности составляет 155 человек/год.
Таблица 9.3. Оценка общего среднего количества смертей за год от ударов тел
По мере открытия астероидов, сближающихся с Землей, в первую очередь крупных, остающаяся опасность сдвигается в сторону меньших тел, а также в сторону комет. В связи с этим большее значение приобретает исследование ударов метеороидов размером ? 10 м как аналогов ударов более крупных тел, представляющих угрозу подобно Тунгусскому событию [Chapman, 2008]. Отметим, что нельзя недооценивать кометную опасность. Хотя удары комет по Земле происходят в 3–6 раз реже, чем астероидов сопоставимого размера [Кузмичева, Иванов, 2005], после каталогизации большинства астероидов акцент потенциальной опасности может сместиться на кометы.
Данный текст является ознакомительным фрагментом.