5. Свет новых далей
Мы расскажем здесь о том, как непосредственное участие Больцмана в решении одной крупнейшей физической проблемы привело впоследствии к рождению новой физики — физики XX столетия, физики микромира, или, как ее называют, квантовой механики. Это потребовало полного отказа от представлений классической физики, которую Больцман так успешно развивал и защищал. Открытие произошло под влиянием достигнутого и сделанного Больцманом.
Речь пойдет о проблеме, до сих пор лишь бегло упоминавшейся на страницах этой книги, а именно о проблеме теплового излучения. Вы знаете, что нагретые тела излучают энергию. Это может быть тепло хорошо протопленной печи, свечение спирали электрической плитки, свет, испускаемый лампой накаливания, тепловое излучение Солнца, в недрах которого температура достигает миллионов градусов. Хорошо известно также, что различные тела обладают способностью в большей или меньшей степени поглощать свет. Например, оконное стекло почти не поглощает света, но стоит сдвинуть шторы, как в комнате становится сумрачно — свет поглощается материалом штор. Сильно поглощающие свет тела кажутся нам черными, примером такого тела является сажа. Ученые-физики не могли пройти мимо проблемы изучения и объяснения закономерностей излучательной и поглощательной способностей различных тел.
Одним из исследователей этой проблемы был немецкий физик Г. Кирхгоф, в лаборатории которого в свое время проходил стажировку и Л. Больцман. Кирхгоф еще в 1859 г. установил следующее правило: когда какая-либо физическая система приходит в тепловое равновесие, поглощаемая телом энергия и отдаваемая им в форме излучения становятся равны друг другу. Математически закон Кирхгофа записывается в следующем виде:
E(?,T)/A(?,T) = ?(?,T),
где E(?,T) — излучательная способность тела, зависящая от частоты излучения v и от температуры Т, A(v,T) — поглощательная способность тела, ?(?,T) — введенная Кирхгофом универсальная, единая для всех тел функция.
Кирхгоф ввел в физику чрезвычайно важное понятие абсолютно черного тела, т. е. тела, поглощающего всю падающую на него энергию независимо от частоты излучения. Для такого тела
A(?,T) = 1.
В природе таких тел нет, но в качестве аналога абсолютно черного тела можно использовать полость с небольшим отверстием, внутренние стенки которого хорошо проводят теплоту (рис. 16). В таком ящике излучение, попадающее внутрь полости, испытывает многократные отражения от стенок и в конце концов полностью поглощается. Кирхгоф обратил внимание на то, что для абсолютно черного тела А(у, Т) = 1 и функция ?(?,T) приобретает физический смысл его излучательной способности. Найти явный вид этой функции в виде математического соотношения (формулы) — значило решить одну из задач физики излучения, поскольку функция ?(?,T) едина для всех тел.
Рис.16. Модель абсолютно черного тела
Рис.17. Распределение энергии в спектре излучения абсолютно черного тела[5]
Идею экспериментального определения функции ?(?,T) предложил сам Кирхгоф. Из небольшого отверстия в стенке полости абсолютно черного тела надо вывести излучение, а затем разложить его в частотный спектр. Преодолев экспериментальные трудности, физики к началу XX в. уже знали экспериментальную зависимость ?(?,T) (рис. 17).
Однако получить теоретическую формулу, совпадающую с полученными экспериментальными данными, долгое время никому не удавалось. С точки зрения истории развития физики эти трудности легко объяснить. Излучение долгое время представляло для ученых новый и трудный для изучения объект. Со времен Максвелла физики знали, что излучение имеет электромагнитную природу, но найти теоретический подход к описанию свойств излучения было непросто. Характерно, что для теоретического обоснования экспериментально полученного закона излучения абсолютно черного тела применялись термодинамические методы и принципы. Еще Кирхгоф применял для доказательства своего закона термодинамическое правило, согласно которому достигнутое в изолированной системе равновесие сохраняется сколь угодно долго и не может быть нарушено теплообменом между частями системы. Следовательно, излучающее тело можно представлять заключенным в оболочку постоянной температуры и непроницаемую для излучения. В результате теплообмена тело принимает температуру оболочки.
Важное место в исследованиях теплового излучения занимают труды учителя Больцмана Й. Стефана. По мере развития кинетической теории газов в середине XIX столетия резко возрос интерес к проверке развитой Д. Максвеллом теории теплопроводности газов. Стефан экспериментально установил полное соответствие опытных данных с предсказаниями теории, что справедливо рассматривалось тогда как один из важных аргументов в пользу справедливости молекулярно-кинетической теории. Логичным продолжением этих работ явилось опубликованное Й. Стефаном в 1874 г. исследование «О связи между тепловым излучением и температурой», где он, обратив внимание на имеющиеся в то время несовпадения экспериментальных результатов различных авторов, устанавливает, что полное количество теплоты Q, излучаемой с единицы поверхности в единицу времени, пропорционально четвертой степени температуры (закон Стефана):
Q ~ T4.
Этот закон позволял уже судить и о виде функции Кирхгофа.
Закон Стефана в течение десяти лет был обоснован только экспериментально. Его теоретический вывод дал в 1884 г. Л. Больцман. Прекрасно зная электромагнитную теорию Максвелла и глубоко веря в ее справедливость, Больцман воспользовался предсказываемым теорией выводом о существовании давления электромагнитного излучения, что, кстати, еще не было подтверждено экспериментально и поэтому оспаривалось многими учеными. (Существование светового давления экспериментально доказал русский ученый П.Н. Лебедев в 1899 г.) Больцман дал очень короткий и изящный вывод закона Стефана. Физики многих поколений рассматривали этот вывод как образец теоретической физики. Позже М. Лауэ оценил его как «триумф электромагнитной теории света». После теоретического обоснования закон Стефана стал называться законом Стефана — Больцмана:
Q = ?T4. (15)
Постоянная
? = 5,67?10-8 Вт/м2?K
и получила название постоянной Стефана — Больцмана.
Первую попытку определения теоретическим путем вида функции Кирхгофа предпринял русский физик В. А. Михельсон в 1887 г. Для этого ему необходимо было предположить определенный механизм возникновения излучения. По мнению Михельсона, излучение обязано своим происхождением колебаниям атомов излучающего тела, которые распределены по скоростям в соответствии с законом Максвелла — Больцмана. Идеи статистики впервые применяются к теоретическому анализу совершенно другого физического явления — теплового излучения. Качественно полученная Михельсоном зависимость ?(?,T) соответствовала эксперименту, однако в дальнейшем было установлено наличие в работе Михельсона некоторых недостаточно обоснованных предположений.
Поиски функции Кирхгофа продолжались. Немецкий физик В. Вин распространил понятия энтропии и температуры непосредственно на тепловое излучение и, развивая идеи Михельсона, уточнил вывод функции Кирхгофа. По его мнению, излучение происходит от газовых молекул, «движущихся по законам вероятности». Полученная Вином зависимость имела вид
?(?,T) = (C2/?5)?exp(-C1/?T),
где C1 и С2 — некоторые постоянные.
Однако экспериментальная проверка полученного Вином соотношения показала, что оно описывает экспериментальные данные только в области коротких длин волн, но резко расходится с опытом при больших значениях ?.
Эти неудачи нисколько не останавливают исследователей. Английский физик Д. Рэлей делает очередную попытку найти теоретическим путем выражение для ?(?,T). В основу своего расчета он положил доказанный Больцманом вывод о равномерном распределении энергии по степеням свободы, хотя правомерность применения этого принципа к тепловому излучению и оспаривалась рядом физиков. Предложенная им картина установления теплового равновесия в полости абсолютно черного тела была принципиально иной, а именно: он полагал, что при отражении излучения от стенок полости внутри нее возникает система стоячих волн (рис. 18). Естественно, что при этом в области малых длин волн (высоких частот) должно сосредотачиваться бесконечно большое количество энергии. Вывод Рэлея впоследствии был уточнен другим английским физиком Д. Джинсом, и полученное соотношение стало называться законом Рэлея — Джинса. Аналогичное выражение, но исходя из идеи возникновения электромагнитного излучения при столкновениях электронов с атомами металла, получил X. А. Лоренц. Однако и сравнение формулы Рэлея — Джинса с экспериментальными данными было также неутешительным. Формула была верна в области длинных волн, но не подтверждалась опытными данными для коротких (рис. 17). Постепенно становилось ясным, что классическая физика была не в состоянии решить проблему излучения абсолютно черного тела. В теории теплового излучения сложилась ситуация, которую П. Эренфест выразительно назвал «ультрафиолетовой катастрофой».
Рис.18. Механизм образования стоячих волн в плоскости абсолютно черного тела
Решение проблемы излучения абсолютно черного тела нашел М. Планк. Отметим, что участие Больцмана в поисках Планка было столь большим, что по всей видимости позволяет назвать его соавтором решения.
Планк приступил к решению проблемы в 1897 г. В это время он был уже хорошо известен своими исследованиями в области термодинамики, но отнюдь не являлся сторонником идей Больцмана о вероятностном, статистическом характере второго начала термодинамики. Это было причиной негативного отношения Больцмана к Планку, поскольку последний, как он сам признавался, придавал «принципу возрастания энтропии применимость во всех без исключения случаях». Именно с этих позиций Планк пытался решить проблему излучения абсолютно черного тела. Его основная идея заключалась в том, чтобы чисто термодинамическим путем объяснить переход к равновесному состоянию системы излучателей (в принципе, их можно связать с атомами), взаимодействующей с электромагнитным излучением замкнутой полости. Это означало бы признание необратимого характера этого взаимодействия.
Много позже в своей работе «Научная автобиография» Планк напишет, что предположение о необратимости «вызвало энергичное возражение со стороны искушенного в этом вопросе Больцмана, который доказал, что по законам классической механики каждый из рассматриваемых мною процессов может протекать также в строго противоположном направлении». Больцман указывал Планку, что в уравнениях электродинамики нет ничего такого, что исключало бы обратные процессы. Больцмановская критика была конструктивной, великий физик подсказывал Планку пути выхода из тупика. Он их видел в привлечении к анализу излучения гипотез статистического характера. Приведем замечательные слова Больцмана: «Так же как и в теории газов, можно и в излучение ввести вероятное состояние, при котором волны не упорядочены, а различным образом взаимодействуют между собой». Больцман смело переносит идеи молекулярно-кинетической теории на процессы электромагнитного излучения. Планк в конце концов добился успеха именно на этом пути.
Но способ, которым шел Планк к успеху, был весьма необычным для теоретика. В 1900 г. он докладывает немецкому физическому обществу работу «Об одном улучшении спектрального закона Вина», в которой он «сконструировал совершенно произвольное выражение для энтропии и получил следующую двухконстантную формулу излучения:
которая, как можно видеть, значительно лучше соответствует опубликованным опытным данным». Этот доклад не вызвал особенного интереса у слушателей, поскольку путь получения новой формулы был совершенно неубедителен. Планк и сам сознавал это.
«Если бы даже формула излучения оказалась совершенно точной, — пишет он, — то она имела бы очень ограниченное значение, исключительно как удачно подобранное интерполяционное выражение. Поэтому я со дня установления этой формулы поставил себе задачей сообщить ей реальное физическое значение. Этот вопрос привел меня к изучению зависимости между энтропией и вероятностью, т. е. к больцмановскому ходу мыслей (выделено мной. — О. С). После нескольких недель наиболее напряженной за всю мою жизнь работы потемки прояснились и передо мной забрезжил свет новых далей».
Еще раз можно отметить направляющую роль Больцмана в прозрении Планка. Об этом же пишет в своей книге «По тропам науки» французский физик Л. де Бройль, вспоминая, что, когда Планк сообщил Больцману о своих первоначальных и неудачных попытках найти формулу излучения, тот ответил ему, что правильную теорию теплового излучения нельзя построить без введения в процессы излучения ранее неизвестного элемента прерывности (дискретности) излучения.
Планк придал реальность этой идее Больцмана, и скоро обнаружилась поразительная плодотворность перенесения атомистических представлений в теорию излучения. Планк ввел так называемую гипотезу естественного излучения, аналогично гипотезе молекулярного хаоса. Ее сутью является то, что отдельные волны, из которых состоит электромагнитное излучение, полностью некогерентны, или, что одно и то же, отдельные излучатели настолько удалены друг от друга, что они непосредственно не взаимодействуют между собой. Мерой энтропии построенной таким образом системы будет, следуя Больцману, число всевозможных «электромагнитно-различных» размещений энергии между излучателями системы. Но для того чтобы вычислить число этих размещений, Планк обязан был предположить, что полная энергия системы складывается из конечного числа элементарных порций энергии, которые он назвал квантами. Нетрудно видеть, что Планк повторяет путь Больцмана, предложенный в работе «Об отношении второго начала механической теории теплоты и исчисления вероятностей в соответствии с теоремами о тепловом равновесии» (1877), однако результат, полученный им, был совершенно иным.
В этой работе Больцман ввел предположение о дискретности энергии молекул лишь как вспомогательный математический прием, как «полезную фикцию». Значение минимальной порции энергии е в окончательные результаты не вошло, так как в ходе расчета Больцман устремлял ее к нулю. Больцман не вкладывал физического смысла в допущение о дискретности энергий молекул, а рассматривал это лишь как способ быстрого решения поставленной перед собой задачи. И все же Планк использует полученный в этой работе результат для определения вероятности состояния системы излучателей, поскольку «в гипотезах, лежащих в основании электромагнитной теории излучения, мы не имеем абстрактно никакого отправного пункта для суждения о такой вероятности». Планк, как и ранее Больцман, рассматривает распределение энергии конечными порциями — квантами — не как свойство самого излучения, а как результат взаимодействия излучения с веществом.
Энергию кванта Планк положил пропорциональной частоте излучения:
? = h?,
где h — введенная им новая постоянная. Полученная в этом предположении формула в точности совпадала с полученным им же ранее выражением. Формула также прекрасно совпадала с экспериментальными данными, и из данных опыта Планк вычисляет значение h:
h = 6,62?10-34 Дж?с.
Постоянная h начала свой путь в физике, ныне же она входит в число универсальных физических постоянных и носит название постоянной Планка.
В ходе теоретических исследований Планк совершенно строго получил формулу Больцмана (14), связывающую энтропию и вероятность, и вычислил значение входящего в нее коэффициента пропорциональности k:
S = klnw, где к = 1,38- 10~23 Дж-К-1. (16)
Он же предложил называть постоянную к постоянной Больцмана, хотя, по его убеждению, «Больцман никогда не вводил этой константы и вообще не заботился об определении ее численного значения». Можно понять всю глубину уважения Планка к великому теоретику. Теперь константа Больцмана к занимает почетное место в ряду универсальных физических постоянных. Например, средняя кинетическая энергия частиц Е связана с температурой T соотношением
Е = 3/2kТ.
Положение с признанием формулы Планка еще долгое время нельзя было назвать удовлетворительным. Несмотря на полное совпадение с экспериментом, ученых смущало то, что теоретические предпосылки, положенные в основу ее вывода, были в полном противоречии с классической физикой. Согласно классическим представлениям, обмен энергией между веществом и электромагнитным излучением мог происходить с непрерывным изменением энергии. Планковская гипотеза превращала этот обмен в прерывный, дискретный процесс. Энергия изменяется только порциями, квантами ? = h?. Именно поэтому вывод Планка был прохладно встречен большинством физиков. Сразу же и безоговорочно приветствовал успех Планка один лишь Больцман! Позже Планк писал, что ему доставило большое моральное удовлетворение то, что, ознакомившись с расчетами, Больцман выразил одобрение его гипотезы. Все же понятию о квантах энергии предстояло долгое время завоевывать себе признание.
Планк очень болезненно переживал предлагаемый им отказ от привычных классических представлений об обмене энергией. «Когда подумаешь о полном экспериментальном подтверждении, — пишет он, — которое получила электродинамика Максвелла в самых тонких явлениях интерференции, когда подумаешь о невероятных трудностях, которые повлек бы за собой отказ от нее для всей теории электрических и магнитных явлений, то испытываешь какое-то отвращение, когда сразу же разрушаешь ее основы». Много раз он тщетно пытался ввести постоянную h в рамки классической физики. В период между 1900 и 1905 гг. гипотеза Планка о существовании квантов энергии практически не обсуждалась физиками.
Первым ученым, который применил гипотезу Планка к анализу других физических явлений и показал ее плодотворность для физики, был А. Эйнштейн. В то же время он пошел значительно дальше Планка в осмыслении его гипотезы. Анализируя явление фотоэффекта (испускания электронов металлами под действием света), ученые долгое время не могли найти объяснение, почему энергия фотоэлектронов не уменьшается при удалении от металлической пластинки источника света (рис. 19).
Рис.19. Схема исследования фотоэффекта
Если придерживаться волновой теории света, то при удалении источника уменьшается плотность энергии, падающей на пластинку, следовательно, можно ожидать и уменьшение энергии испускаемых электронов. Однако русский ученый А. Г. Столетов экспериментально установил, что энергия фотоэлектронов зависит не от интенсивности света, а лишь от частоты излучения ?. Удивительно простым, но находящимся в резком противоречии с классическими представлениями о волновой природе света было объяснение фотоэффекта А. Эйнштейном в 1905 г. Согласно его теории, источник света испускает кванты света определенной частоты — фотоны с энергией ? = h?, которые после испускания ведут себя как самостоятельные физические объекты. Естественно, что при этом их энергия никоим образом не зависит от удаления их от источника света. Эйнштейновское уравнение фотоэмиссии вскоре успешно прошло экспериментальную проверку. В физику вошло принципиально новое представление о квантах света — фотонах.
Быстрое экспериментальное и теоретическое подтверждение квантовой гипотезы показало ее исключительную плодотворность. Эти успехи можно несомненно рассматривать как триумф развиваемых Больцманом статистических идей. Вероятностные представления вскоре проникают в новые области физики — физику атомов и элементарных частиц. Вероятностный, статистический подход является единственно возможным для описания поведения каждой отдельной микрочастицы. Без преувеличения можно сказать, что лицо современной физики определяет именно статистическая физика.
* * *
Развитие физики блестяще подтвердило справедливость научных идей Людвига Больцмана. Нашли убедительные экспериментальные подтверждения представления об атомистическом строении материи. Глубоко прав был современник Больцмана А. Зоммерфельд, когда писал, что «квантовая теория была бы настоящим полем деятельности для атомистически устроенного больцмановского интеллекта».
С годами росло понимание величия вклада, сделанного Больцманом в развитие физики. В 1933 г. Вена взяла под свое попечительство его могилу на центральном кладбище. Ее украшает беломраморный бюст Больцмана, на постаменте выгравирована формула, впервые полученная им и являющаяся его высшим творческим достижением:
S = k?ln w.
Вспоминая об изумительных по глубине мысли творениях великого физика, о его неимоверно трудной борьбе за признание справедливости созданного им, вспоминая о чистом и светлом образе рыцаря науки и ее труженика, закончим книгу о Людвиге Больцмане его же словами:
«Благодарю же тебя, дорогая тень, за то, что ты вела меня. Как легко было двигаться по крутым тропам науки при твоей заботливой поддержке. Вернись отгула, где ты пребываешь среди стольких великих душ, ты, один из величайших. Воистину, отдаленнейшие потомки наши отдадут дань восхищения великим мужам, которых породило наше столетие. Если что-либо может быть уподоблено этому восхищению, то разве лишь величайшее изумление — как то же самое столетие не смогло освободиться от такого изобилия смешного педантизма, бессмыслицы и глупых суеверий!»
Памятник Л. Больцману на центральном венском кладбище
* * *