Сюрпризы грамицидина

Все знают, что в названии «витамин С» буква «С» читается как русская «ц», и только малограмотный человек может сказать «витамин эс». Видимо, по аналогии название некогда распространенного антибиотика грамицидина С также произносят «грамицидин це». Однако это неверно: буква «С» в этом названии должна произноситься как «эс». История появления этого лекарственного средства, а также других антибиотиков интересна и драматична. Когда говорят «антибиотик», чаще всего вспоминают пенициллин. Его открытие в середине ХХ в. знаменовало собой новую эпоху в борьбе с болезнетворными микроорганизмами. Пенициллин и другие антибиотики спасли от неминуемой смерти миллионы людей. Однако мало кто знает, что история антибиотиков по сути намного древнее. Еще в Библии было описано применение грибов и плесени для обработки инфицированных ран. В начале 70-х гг. XIX в. врач и публицист Вячеслав Авксентьевич Манасеин (1841–1901) и дерматолог Алексей Герасимович Полотебнов (1838–1908) установили антибактериальные и лечебные свой ства зеленой плесени. В частности, Манасеин в 1871 г. опубликовал в «Военно-медицинском журнале» статью «Об отношении бактерий к зеленому кистевику Penicillum glaucum». Российские медики применяли плесень для лечения гнойных ран и хронических язв. Но несовершенство химических методов не позволило в то время выделить из плесени действующее начало.

В 1928 г. шотландский бактериолог и биохимик Александр Флеминг (он приобрел известность еще в 1922 г. благодаря открытию фермента лизоцима) заметил, что оставленная им на несколько дней культура стафилококковых бактерий покрылась плесенью.

Однако вместо того, чтобы просто выбросить испорченный препарат, Флеминг начал внимательно его разглядывать: он заметил, что вокруг каждого пятнышка плесени располагаются чистые области, где культура бактерий исчезла. Он понял, что в этих областях присутствует какое-то вещество, выделяемое плесневыми грибами, которое обладает сильным антибактериальным действием. Так Флеминг открыл пенициллин. Это название происходит от рода грибов Penicillum (их около 250 видов). Флеминг использовал активный раствор пенициллина для лечения ран. Но выделить действующее начало в чистом виде ему тогда не удалось: антибиотик быстро терял свои свойства при любых попытках его выделения и очистки.

Задача была решена лишь десятилетие спустя английским биохимиком Эрнстом Борисом Чейном, немцем по происхождению, эмигрировавшем из Германии в 1933 г. Он применил необычную для того времени методику сублимационной сушки: водный раствор препарата был заморожен до –40 °С, и при этой температуре из него был в вакууме испарен лед. Полученные таким способом кристаллы пенициллина оказались стойкими и сохраняли свое действие в течение длительного времени. Исследовал терапевтические свойства очищенного пенициллина и впервые применил его с лечебной целью английский патолог австралийского происхождения Х. У. Флори. К 1940 г. была создана реальная возможность для массового использования пенициллина в качестве лекарства. Оказалось, что он губителен не только для стафилококков, но также для пневмококков, менингококков и многих других микробов. В США, которые в декабре 1941 г. вступили в войну с Японией, в исключительно короткие сроки были построены огромные предприятия по производству пенициллина для нужд армии. К 1945 г. была разработана технология, которая позволяла получать полтонны продукта в месяц. Несмотря на все усилия немецкой и японской разведок, им так и не удалось узнать секрет получения нового средства.

Справедливости ради следует сказать, что первым антибиотиком, выделенным в чистом виде, был не пенициллин, а тиротрицин, полученный в 1939 г. американским ученым Р. Дюбо из культуры спор почвенной аэробной палочки Bacillus brevis. Однако он оказался токсичным и не нашел практического применения.

Ученые, открывшие и выделившие пенициллин в чистом виде, приобрели всемирную известность: Флеминг и Флори были возведены в пэры Британии, стали членами научных обществ и академий разных стран, Флори был также награжден золотой медалью имени М. В. Ломоносова АН СССР. Флеминг же был выбран почетным вождем племени кайова в Северной Америке. В 1945 г. Флеминг, Чейн и Флори получили Нобелевскую премию по физиологии и медицине «за открытие пенициллина и его терапевтического эффекта при лечении разных инфекционных заболеваний» (официальная формулировка протокольного решения шведского Каролинского медико-хирургического института, который присуждает премии в этой области).

В нашей стране исследования пенициллина микробиологом Зинаидой Виссарионовной Ермольевой (в будущем – академика Академии медицинских наук) увенчались в 1942 г. выделением пенициллина из культуры Penicillum crustorum. После войны по разработанному Ермольевой методу было организовано производство пенициллина на заводах в разных городах страны. Ее заслуги были в 1943 г. отмечены Государственной премией. Ермольева первой получила также отечественный стрептомицин (в 1947 г.), интерферон, ряд других препаратов.

Детальное изучение пенициллина показало, что это не одно вещество, а группа близких по химическому строению соединений. Наиболее ценным оказался природный бензилпенициллин, который в течение многих лет широко применялся в медицинской практике. В 1958 г. химики научились «снимать» с него бензильную группу С6Н5СН2 и присоединять взамен ее другие органические группы. Некоторые из этих полусинтетических веществ, не имеющих аналогов среди природных соединений, обладали более высокой антимикробной активностью.

Бензилпенициллин

Успешное применение пенициллина и его производных способствовало поиску других антибиотиков в царстве грибов. Было, например, известно, что в одном грамме почвы содержатся миллионы бактерий, плесеней и иных микроорганизмов. Знали также, что туберкулезные палочки, попадая в почву, быстро погибают. Еще в 1932 г. отечественный микробиолог Н. А. Красильников обнаружил у некоторых обитающих в почве лучистых грибов – актиномицетов способность, подобно пенициллину, уничтожать микробов. Он впервые выделил актиномицеты в отдельный класс и в 1939 г. описал антибиотик актиномицетного происхождения. В годы войны в работу включился американский микробиолог З. А. Ваксман, который совершил в медицине открытие не меньшего значения, чем Флеминг. Однако, если Флемингу помог случай, открытие Ваксмана было совершенно закономерным. Зельман Абрахам Ваксман, преподаватель Национального сельскохозяйственного колледжа, родился в небольшом поселке в Украине и первоначальное образование получил в России. В 1910 г. он эмигрировал в США и с 1914 г. занимался изучением почвенных микроорганизмов, в частности актиномицетов. С 1938 г. начал систематические испытания различных актиномицетов на способность образовывать антимикробные вещества. Уже в 1940 г. Ваксман выделил антибиотик актиномицин, но он оказался слишком токсичным для человека.

Ваксман продолжил поиск микроорганизмов, образующих антибиотики (он ввел в употребление и сам термин «антибиотик»; от греч. bios – «жизнь» и приставки anti – «противодействие»).

В 1943 г. он выделил из актиномицетов вида Streptomyces griseus новый антибиотик стрептомицин, который обладал широким спектром антимикробного действия. Он оказался весьма эффективным в отношении микобактерий туберкулеза, а также большинства грамотрицательных и некоторых грамположительных микроорганизмов. (Заметим, кстати, что термины «грамотрицательный» и «грамположительный» с единицей массы никак не связаны: они названы так по фамилии датского врача Ганса Христиана Грама, который в 1884 г. изобрел способ различать два вида микроорганизмов по способности только одного вида после специальной обработки окрашиваться красителем.) Стрептомицином лечили бруцеллез, чуму, другие тяжелые болезни, против которых до этого не существовало специфических средств терапии.

Особенно впечатляющим было действие стрептомицина на больных туберкулезным менингитом, который ранее в 100 % случаев заканчивался смертью больного в течение 20 дней. В нашей стране в 1946 г. с помощью стрептомицина впервые была вылечена от этой страшной болезни 9-летняя девочка, причем антибиотик был доставлен самолетом из США. Выздоравливающую девочку в московской клинике посетил и Ваксман. И в этом нет ничего удивительного. Еще в период войны между союзниками – СССР, США и Великобританией – были налажены многосторонние связи по сотрудничеству в медицине. Так, в 1943 г. СССР посетил один из творцов пенициллина Флори с намерением помочь в выпуске антибиотика. Флори был сторонником безвозмездного обмена между союзниками достижениями в области медицины, хотя в правительственных кругах стран-союзниц далеко не все разделяли эту точку зрения.

В 1952 г. Зельман Ваксман был удостоен Нобелевский премии «за открытие стрептомицина – первого антибиотика, эффективно действующего против туберкулеза». Однако в начале 50-х гг. Ваксмана ждал тяжелый удар: его бывший студент и соавтор научных публикаций о стрептомицине Альберт Шац подал на него в суд с требованием «поделиться»; более того, Шац, вероятно, инициировал письмо, направленное в Нобелевский комитет вицепрезидентом Национального сельскохозяйственного колледжа Э. С. Рейнталером, в котором содержалась неслыханная просьба – пересмотреть решение о награждении. В ответном письме президент Нобелевского комитета Х. Бергстранд указал, что многочисленные американские ученые, которым было предложено представить кандидатуры на Нобелевскую премию, назвали Ваксмана и никто из них не назвал Шаца. Любопытно, что Бергстранд написал также о том, что в английском переводе шведского текста с положением о Нобелевских премиях допущена ошибка: если в работе, которая награждается премией, участвовало несколько лиц, то премия не «должна быть», а «может быть» присуждена им совместно…

Широкие исследования почвенных грибов с целью получения антибиотиков были начаты в годы войны и в Москве – в Институте малярии, в лаборатории, которой руководил биолог профессор Георгий Францевич Гаузе. Для лечения раненых необходимо было как можно скорее получить чудодейственный препарат. Жена Гаузе биохимик Мария Георгиевна Бражникова очень ярко описала атмосферу поисков, в которых сама участвовала как сотрудник лаборатории: «Все столы лаборатории были заставлены стеклянными плоскими тарелочками, так называемыми чашками Петри. На других столах были расставлены штативы с пробирками, наполненными землей. Пробы собирали повсюду – во дворах, огородах, на свалках, в лесах и полях Подмосковья. Карманы сотрудников были полны маленькими сверточками с землей. Землю приносили в лабораторию, пересыпали в пробирки и в каждую пробирку наливали немного воды, чтобы получилась земляная каша. В чашки Петри наливали питательную среду, содержащую мясной бульон и сахар. Каплю взвеси, содержащую тысячи опасных микробов (отдельно приготовленных стафилококков), помещали на поверхность застывшей питательной среды, а затем на ту же поверхность наносили каплю земляной каши из пробирки. Засеянные таким образом чашки выдерживали в термостате при определенной температуре. За это время на поверхности студня вырастали десятки различно окрашенных точек – желтые колонии стафилококков вперемешку с желтыми, красными, синими, белыми, прозрачными, круглыми, зубчатыми, бахромчатыми колониями почвенных микробов. Вокруг некоторых колоний почвенных микробов можно было ясно различить „зону пустыни“. Эти почвенные микробы ограждали себя, выпуская в окружающую среду какое-то вещество, которое подавляло все живое».

В 1942 г. из культуры бактерий, обитающих на огородных почвах Подмосковья, был, наконец, выделен в кристаллическом виде первый оригинальный отечественный антибиотик, который назвали грамицидином С. Это название отражает действие антибиотика преимущественно на грамположительные бактерии, а caedo на латыни – «убивать» (этот же корень в словах «пестицид», «бактерицид», «стрептоцид», «геноцид» и др.). Буква же «С» в названии антибиотика означала «советский», чтобы отличить его от «просто» грамицидина, открытого ранее в США. А почвенные бактерии, синтезирующие антибиотик, получили название Bacillus brevis var. G.-B.; последние буквы – признание заслуг Гаузе и Бражниковой. Анализы, проведенные отечественными биохимиками А. Н. Белозерским (будущим академиком, вице-президентом Академии наук) и Т. С. Пасхиной, показали, что грамицидин С – белок. Для установления его строения требовалось очень серьезное химическое исследование. С этой целью в рамках тогдашнего сотрудничества союзников Минздрав СССР в 1944 г. передал образец нового антибиотика в дружественную Великобританию, в расположенный в Лондоне Листеровский медицинский институт. Там им занялся известный биохимик Ричард Синг.

Первые же опыты привели к неожиданному результату: любой белок – это соединенные последовательно с помощью пептидных связей NH–CO молекулы аминокислот. Поэтому с одного конца цепочки в белке должна быть аминогруппа NH2, а с другого – кислотная группа COOH. Так вот, аминогруппы в грамицидине С были, а вот кислотных групп не было! Единственное объяснение этого странного факта заключалось в том, что молекула грамицидина С не линейная, а циклическая, так что концевые группы NH2 и COOH соединяются друг с другом, замыкая кольцо. Присутствие же аминогрупп объяснить было просто, так как некоторые из аминокислот (аспарагин, глутамин, лизин и др.) имеют в молекуле по две аминогруппы.

Когда раствор грамицидина С нагрели в присутствии соляной кислоты, он распался на отдельные аминокислоты. Здесь ученых ждал второй сюрприз: грамицидин С оказался очень простым белком, так как содержал всего пять различных аминокислот (для сравнения – яичный альбумин, основной компонент яичного белка, содержит 20 разных аминокислот, а его молекулярная масса в десятки раз больше, чем у грамицидина). Среди аминокислот, найденных в грамицидине, была очень редко встречающаяся в природных белках аминокислота орнитин – 2,5-аминопентановая кислота H2N(CH2)3CH(NH2)COOH. В орнитине две аминогруппы, одна из которых в белковой молекуле остается свободной. Орнитин – некодируемая аминокислота, для которой природа не предусмотрела своего «шифра» в генетическом коде. Она образуется (одновременно с мочевиной) в результате гидролиза кодируемой аминокислоты – аргинина, входящего в состав белка: HN=C(NH2)–NH–(CH2)3–CH(NH2)–COOH + H2O → H2N–(CH2)3–CH(NH2)–COOH + CO(NH2)2. Присутствие в природной белковой молекуле орнитина было третьим сюрпризом, который грамицидин преподнес ученым. Остальные четыре аминокислоты (пролин, валин, лейцин и фенилаланин) были самыми обычными составными частями природных белков.

Р. Синг нашел, что всех аминокислот в грамицидине С содержится поровну. Не представляло труда подсчитать минимальное значение молекулярной массы грамицидина С: она равна 117 (валин) + 131 (лейцин) + 165 (фенилаланин) + 132 (орнитин) + 115 (пролин) – 90 (пять молекул Н2О) = 660 – 90 = 570. (При образовании белковой молекулы из отдельных аминокислот происходит отщепление молекул воды; образование кольцевой цепочки из пяти молекул аминокислот сопровождается отщеплением пяти молекул воды.)

Последний сюрприз ждал ученых, когда они независимыми физическими методами определили, что молекулярная масса грамицидина С примерно вдвое больше рассчитанной по простейшей химической формуле. Объяснение оказалось простым – каждая аминокислота входит в молекулу грамицидина дважды, т. е. кольцевая молекула содержит не пять, а десять остатков аминокислот. Теперь надо было установить точное строение циклической молекулы, т. е. в каком порядке аминокислоты соединены друг с другом. Это трудоемкое исследование Синг провел в 1947 г. с группой коллег из английского города Лидса. Оказалось, что если грамицидин С не греть сильно с соляной кислотой (когда она распадается на отдельные аминокислоты), а проводить реакцию при температуре тела человека (37 °С), то она идет медленно, в течение многих недель, и при этом молекула постепенно расщепляется на отдельные фрагменты из двух или трех связанных друг с другом аминокислот. Эти фрагменты были разделены с помощью хроматографии на бумаге. Вот какие «кусочки» обнаружили в растворе: вал-орн, орн-лей, фен-про, лей-фен, вал-орн-лей, фен-про-вал, про-вал-орн (этими буквами сокращенно обозначают аминокислоты). Дальнейшая работа очень похожа на игру в домино: «кусочки» нужно правильно состыковать друг с другом, при этом должно получиться замкнутое кольцо. Легко проверить, что сделать это можно одним-единственным способом; например, фенилаланин должен быть с одной стороны связан с лейцином, с другой – с пролином. В результате было окончательно выяснено строение этого необычного антибиотика:

Любопытно, что в анализах кристаллической структуры грамицидина С участвовала будущий британский премьер-министр Маргарет Тэтчер, незадолго до того защитившая диссертацию по химии. Грамицидин С имел существенные преимущества перед американским «тезкой»: у него был более простой аминокислотный состав, более широкий спектр антибактериального действия и более высокая стойкость к внешним воздействиям. Еще во время войны обнаружили, что грамицидин С подавляет рост гноеродных микробов, убивая стрептококков, стафилококков, пневмококков, возбудителей анаэробной инфекции; его начали применять для лечения гнойных ран, ожогов, язв, фурункулов, воспалительных заболеваний уха и горла, а также при лечении пролежней, язв, остеомиелита, флегмон, карбункулов, фурункулов и т. п. Под торговым названием «Граммидин» грамицидин С и сейчас применяется в медицинской практике.

В 1970-х гг. из образцов некоторых почв были выделены новые виды актиномицетов, которые вырабатывали полиены – вещества, в которых чередуются несколько простых и двойных связей углерод-углерод (полиены придают цвет, в частности, каротину). Некоторые полиены также обладают сильной бактерицидной активностью. Поскольку микроорганизмы вырабатывают устойчивость к антибиотикам, приходится постоянно изыскивать все новые и новые, а также модифицировать их или полностью синтезировать (так называемые полусинтетические и синтетические антибиотики). В настоящее время описано более 6000 только природных антибиотиков, однако широко применяется лишь сотая их часть. Кроме них описано еще 100 000 (!) полусинтетических антибиотиков, но совсем немногие из них обладают всем комплексом нужных свойств. При определении их эффективности учитывают не только антимикробную активность, но и скорость выработки устойчивости к ним микроорганизмов и ряд других факторов.

Большинство антибиотиков получают микробиологическим синтезом с использованием специально разработанных питательных сред. «Химиками» в них работают актиномицеты, плесневые грибы и бактерии. Природные антибиотики, в том числе бензилпенициллин, цефалоспорин, рифамицин, используют в основном для получения полусинтетических производных. Чисто синтетических антибиотиков немного. К ним принадлежит широко известный левомицетин. По своему строению антибиотики относятся к самым разным классам химических соединений: среди них можно найти аминосахара, антрахиноны, гликозиды, лактоны, феназины, пиперазины, хиноны, пиридины, терпеноиды… Так что не следует удивляться, что антибиотиков известно так много. В будущем для создания новых антибиотиков с заранее заданными свойствами будут использоваться в основном методы генной инженерии.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК