Квантовые звёзды

Квантовая теория возникла в начале XX века, но математическую базу под неё подвели лишь в середине 1920-х годов. Согласно этой теории, мельчайшие составляющие материи ведут себя одновременно как локализованные частицы (похожие на крошечные бильярдные шары) и как распространяющиеся волны (как рябь на поверхности пруда). Этот корпускулярно-волновой дуализм является причиной множества странных и удивительных явлений. Например, когда одна частица может находиться в двух местах одновременно. Кроме того, он играет важную роль в том, что в конце своего жизненного цикла звёзды утрачивают энергию.[198]

Когда звёздное топливо перестаёт толкать материю, из которой состоит звезда, в разные стороны, гравитация железной рукой сжимает её примерно до размеров нашей планеты. Такой белый карлик примерно в 100 раз меньше и в миллион раз плотнее, чем Солнце. Это последняя фаза существования всех звёзд, включая и нашу. Кубик такой материи размером с кусок сахара будет весить как автомобиль, и при такой высочайшей плотности электроны окажутся очень близко друг к другу.

Волна, зажатая в небольшом пространстве, становится более резкой и отрывистой. Если речь идёт о квантовых волнах, это значит, что частица начинает двигаться быстрее (или, строго говоря, приобретает больший импульс). Так формулируется знаменитый принцип неопределённости Гейзенберга. Согласно ему, когда электроны оказываются плотно прижатыми друг к другу внутри белого карлика, их скорости очень сильно увеличиваются.

Этот квантовый эффект имеет для белых карликов огромные последствия. Но существует и ещё одно явление того же порядка, объяснить которое немного сложнее.[199] Ещё одним последствием корпускулярно-волнового дуализма является разделение всех составляющих материи на две группы: бозоны, которые любят большие компании, и фермионы, которые предпочитают жить поодиночке. Фермионы, к которым относится и электрон, действуют в соответствии с принципом Паули, который гласит, что два фермиона не могут одновременно находиться в одном и том же квантовом состоянии.[200]

Для электронов внутри белого карлика это означает, что две соседние частицы имеют различную скорость. Если скорость одной из них определяется принципом неопределённости Гейзенберга, то скорость соседней должна быть выше (как показывает практика, в два раза). Соответственно, соседняя с ней частица будет иметь в три раза бо?льшую скорость и так далее.

Представьте себе лестницу, где каждая ступень соответствует всё большей и большей скорости. Согласно принципу Паули каждую ступеньку может занимать только один электрон (на самом деле два, но это уже совсем другая история).[201] Принцип Паули утверждает, что электроны в белом карлике имеют невероятно высокие скорости, значительно превышающие те, которые предполагает принцип неопределённости Гейзенберга. Именно это стремительное движение электронов внутри звезды и противодействует сжатию под влиянием гравитации. Воздействие так называемого вырождения электронов поддерживает белый карлик в стабильном состоянии и не даёт ему схлопнуться до размеров меньше земных.[202]

Итак, вот как обстояло положение дел в конце 1920-х годов. На выручку умирающим звёздам пришла квантовая теория, остановившая их падение в чёрные дыры с зияющей сингулярностью в самом сердце. Всё было под контролем. Всё было хорошо.

Вернее, лишь казалось.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК