3.1.4 Периодичность свойств химических элементов и их соединений
а) Размеры атомов и ионов. Вследствие волновой природы электрона * атом не имеет строго определенных границ. Радиусы атомов и ионов являются условными величинами. Их обычно вычисляют из межатомных расстояний, которые зависят не только от природы атомов, но также и от вида химической связи между ними.
Зависимость атомных радиусов (r) от заряда ядра (Z) имеет периодический характер. В пределах одного периода с увеличением Z проявляется тенденция к уменьшению размеров атомов. Например, во втором периоде атомные радиусы имеют следующие значения:
Li
Be
B
C
N
O
F
r, нм
0,155
0,113
0,091
0,077
0,071
0,066
0,064
Это объясняется увеличением притяжения электронов внешнего слоя к ядру по мере возрастания заряда ядра. В подгруппах сверху вниз атомные радиусы возрастают, т.к. увеличивается число электронных слоев:
r, нм
r, нм
Li
0,155
N
0,071
Na
0,189
P
0,130
K
0,236
As
0,148
Rb
0,248
Sb
0,161
Cs
0,268
Bi
0,182
Потеря атомом электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов – к увеличению. Поэтому радиус положительного иона (катиона) всегда меньше, а радиус отрицательного иона (аниона) всегда больше, чем радиус соответствующего электронейтрального атома. Например:
r, нм
r, нм
K0
0,236
Cl0
0,099
K+
0,133
Cl–
0,181
Радиус иона тем сильнее отличается от радиуса атома, чем больше заряд иона:
Cr0
Cr2+
Cr3+
r, нм
0,127
0,083
0,064
В пределах одной подгруппы радиусы ионов одинакового заряда возрастают с увеличением заряда ядра:
r, нм
r, нм
Li+
0,068
F–
0,133
Na+
0,098
Cl–
0,181
K+
0,133
Br–
0,196
Rb+
0,149
I–
0,220
Такая закономерность объясняется увеличением числа электронных слоев и растущим удалением внешних электронов от ядра.
б) Энергия ионизации и сродство к электрону. В химических реакциях ядра атомов не подвергаются изменению, электронная же оболочка перестраивается, причем атомы способны превращаться в положительно и отрицательно заряженные ионы. Эта способность может быть количественно оценена энергией ионизации атома и его сродством к электрону.
Энергией ионизации (потенциалом ионизации) I называется количество энергии, необходимое для отрыва электрона от невозбужденного атома с образованием катиона:
X – e → X+
Энергия ионизации измеряется в кДж/моль или в электронвольтах[30] (эВ). Отрыв второго электрона происходит труднее, чем первого, т.к. второй электрон отрывается не от нейтрального атома, а от положительного иона:
X+ – e → X2+
Поэтому второй потенциал ионизации I2 больше, чем первый (I2>I1). Очевидно, что удаление каждого следующего электрона будет требовать больших энергетических затрат, чем удаление предыдущего. Для характеристики свойств элементов обычно принимают во внимание энергию отрыва первого электрона.
В группах потенциал ионизации уменьшается с увеличением атомного номера элемента:
Li
Na
K
Rb
Cs
I, эВ
6,39
5,14
4,34
4,18
3,89
Это связано с большей удаленностью валентных электронов от ядра и, следовательно, с их более легким отрывом по мере увеличения количества электронных слоев. Величина потенциала ионизации может служить мерой “металличности” элемента: чем меньше потенциал ионизации, тем легче удалить электрон из атома, тем сильнее выражены металлические свойства.
В периодах слева направо заряд ядра возрастает, а радиус атома уменьшается. Поэтому потенциал ионизации постепенно увеличивается, а металлические свойства ослабевают:
Li
Be
B
C
N
O
F
Ne
I, эВ
5,39
9,32
8,30
11,26
14,53
13,61
17,42
21,56
Нарушение тенденции возрастания I наблюдается для атомов с целиком заполненным внешним энергетическим подуровнем, либо для атомов, у которых внешний энергетический подуровень заполнен ровно наполовину:

Это свидетельствует о повышенной энергетической устойчивости электронных конфигураций с полностью или ровно наполовину занятыми подуровнями.
Степень притяжения электрона к ядру и, следовательно, потенциал ионизации зависят от ряда факторов, и прежде всего от заряда ядра[31], от расстояния между электроном и ядром, от экранирующего влияния других электронов. Так, у всех атомов, кроме элементов первого периода, влияние ядра на электроны внешнего слоя экранировано электронами внутренних слоев.
Поле ядра атома, удерживающее электроны, притягивает также и свободный электрон, если он окажется вблизи атома. Правда, этот электрон испытывает отталкивание со стороны электронов атома. Для многих атомов энергия притяжения дополнительного электрона к ядру превышает энергию его отталкивания от электронных оболочек. Эти атомы могут присоединять электрон, образуя устойчивый однозарядный анион. Энергию отрыва электрона от отрицательного однозарядного иона в процессе X– – e → X0 называют сродством атома к электрону (A), измеряемым в кДж/моль или эВ[31] . При присоединении двух и более электронов к атому отталкивание преобладает над притяжением – сродство атома к двум и более электронам всегда отрицательно. Поэтому одноатомные многозарядные отрицательные ионы (O2–, S2–, N3– и т.п.) в свободном состоянии существовать не могут.
Сродство к электрону известно не для всех атомов. Максимальным сродством к электрону обладают атомы галогенов.
в) Электроотрицательность. Эта величина характеризует способность атома в молекуле притягивать к себе связующие электроны. Электроотрицательность не следует путать со сродством к электрону: первое понятие относится к атому в составе молекулы, а второе – к изолированному атому. Абсолютная электроотрицательность (кДж/моль или эВ ) равна сумме энергии ионизации и сродства к электрону: АЭО=I+A. На практике часто применяется величина относительной электроотрицательности, равная отношению АЭО данного элемента к АЭО лития (535 кДж/моль):

Электроотрицательность уменьшается сверху вниз по группе и увеличивается слева направо по периоду. Ниже приведены относительные электроотрицательности некоторых элементов.
Li
Be
B
C
N
O
F
ОЭО
1,0
1,5
2,0
2,5
3,1
3,5
4,0
Na
K
Rb
Cs
ОЭО
0,9
0,8
0,8
0,7
Cl
Br
I
ОЭО
3,0
2,8
2,6
Наибольшее значение электроотрицательности имеет фтор, наименьшее – цезий. Водород занимает промежуточное положение, т.е. при взаимодействии с одними элементами (например, с F) он отдает электрон, а при взаимодействии с другими (например, с Rb) – приобретает электрон.
г) Окислительно-восстановительные свойства нейтральных атомов. Эти свойства определяются значениями энергии ионизации и сродства к электрону. Восстановительные свойства проявляет атом, отдающий электрон, а окислительные – атом, принимающий электрон. В периоде слева направо восстановительные свойства ослабевают, т.к. потенциал ионизации возрастает. В подгруппах сверху вниз восстановительные свойства нейтральных атомов усиливаются, поскольку потенциал ионизации в этом направлении уменьшается. Окислительные свойства, напротив, усиливаются слева направо в периоде и ослабевают сверху вниз в подгруппе, что связано с тенденциями в изменении сродства к электрону.
д) Кислотно-основные свойства соединений. Свойства оксидов и гидроксидов элементов зависят главным образом от заряда и радиуса центрального атома. С ростом положительного заряда (точнее, степени окисления) центрального атома кислотный характер этих соединений становится более выраженным:
Na+
Mg2+
Al3+
Si4+
P5+
S6+
Cl7+
Na2O
MgO
Al2O3
SiO2
P2O5
SO3
Cl2O7
NaOH
Mg(OH)2
Al(OH)3
H2SiO3
H3PO4
H2SO4
HClO4
основные
амфотерный
слабо кислотный
средне кислотный
сильно кислотные
Сверху вниз в подгруппе при одинаковости заряда (степени окисления) центрального атома с увеличением его радиуса кислотные свойства оксидов и гидроксидов ослабевают, а основные – усиливаются:
B3+
H3BO3
слабая кислота
Al3+
Ga3+
In3+
Al(OH)3
Ga(OH)3
In(OH)3
амфотер-
ные гидрок-
сиды
Tl3+
Tl(OH)3
более выражены основные свойства
Аналогичный пример можно привести для кислородсодержащих кислот элементов VI группы: сила кислот убывает в ряду H2SO4[32], H2SeO4[33], H2TeO4[34].
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК