Глава 5
Глава 5
Господа профессоры Санкт-Петербургской Академии наук
По мосткам, проложенным вдоль низкого и топкого берега Васильевского острова, душным июльским днем лета 1753 года идут двое. Один высок и дороден. Телосложения крепкого, можно сказать, богатырского. Шагает широко, размашисто, под ноги не глядит. Попадет каблук башмака в щель промеж досок — выдернет, не поморщась. Вроде как не замечает он ни жары-духоты летней предгрозовой, ни пыли, ни неровностей пути. Темные круги обозначились в подмышках на голубом академическом кафтане с отворотами. Время от времени утирает он широким обшлагом пот, стекающий из-под напудренного парика, но хода не замедляет.
Другой ростом поменьше и в кости тоньше, а потому кажется рядом с товарищем комплекции субтильной. Однако, ежели приглядеться, то и он мужчина крепкий и в самой поре, лет сорока. Поспешая за рослым спутником своим, идет аккуратно, выбирает, куда ступить, чтобы пыль от хлопающих досок не садилась на белые чулки и панталоны. Одновременно успевает и оглядеться вокруг, оценить и удержать в памяти все увиденное. Плывет по Неве плот. «Две дюжины бревен в ряду, — отметит он про себя и посчитает: — На две гонки мужиков трое, что есть немного, а стало быть, хорошо работают, не ленятся». Приметит посредине плота груз, прикрытый рогожей, враз уразумеет: «Должно, чугун в Адмиралтейство от Литейного сплавляют». Жара ему не помеха, даже лоб не блестит. Оглядев небосвод, край которого медленно затягивают облака, наливающиеся свинцовой тяжестью, он тут же отмечает вслух: «Es ist warm, aber ich glaube, das nach Mittag ein Qewitter sein wird…»[9].
И хотя мысли его товарища далеки от окружающего, тот откликается: «Vielleicht, meinetwegen»[Возможно, пусть будет… (Нем.) — и переходит на русский язык: «На Илью до обеда всегда лето, а с обеда — осень. — Он смотрит на небо. — Тучи от норда идут. Грому нарочитаго ожидать можно. Надобно машину грозовую наладить успеть, дабы опыты и обсервации чинить непомешно. Есть ли новинки в сем деле за то время, что был я в Усть-Рудицах?»
Переходит ка русскую речь и его приметливый товарищ: «Сего июля осьмнадцатого числа имел я паки случай примечать електрическую силу громовых туч. Опыты чинились при некоторых господах профессорах и членах академических… — Он говорит с трудом, книжно, как пишет. Так обычно говорят иноземцы, знакомые с языком не по живому общению с людьми, а через книжную ученость. — Гром не близко, однако ж, после первого удара шелковая нить указателя от железной линейки нарочито далеко отскочила, и материя електрическая с шумом из конца линейки в светлыя искры рассыпалась… — Он забегает чуть вперед, чтобы посмотреть, производит ли его рассказ должное впечатление на собеседника. И, убедившись, что тот слушает с интересом, продолжает: — У некоторых, державших линейку, великое потрясение по всей руке и иным членам произошло. А шум исходящей материи слышали даже те, кто стоял нарочито далеко…»
Именно такой представляется мне сегодня сцена возвращения двух профессоров Санкт-Петербургской Академии — Михаилы Васильевича Ломоносова и Георга Вильгельма Рихмана после заседания Конференции домой в июле 1753 года. Таким представляется и их диалог…
Опыты, чинимые с электрической силой, поражали воображение Ломоносова. Околдованный еще в Марбурге в студенческие годы зрелищем, как под ладонями университетского экспериментатора вертящийся стеклянный шар накапливает таинственную материю, которая стреляет голубыми искрами, он всеми силами содействовал постановке тех опытов в Петербурге. Рад был, что и друг его, любезный профессор Рихман, тою же материей заинтересован. Добивался для Рихмана отведения «каморы електрической» в строгановском доме, хлопотал о приборах и бегал повсечасно глядеть, то ли делает профессор, да все ли ладно получается… У себя в доме, к ужасу супруги Лизаветы Андреевны и домочадцев своих, соорудил он «громовую махину», с коею чинил опыты, пугавшие всю округу.
В 1744 году по собственному почину буйный Академии наук адъюнкт Михаила Ломоносов приступил к наблюдению за грозами. В рабочем журнале он отметил 17 гроз за лето. Более всего прогремело их в июле. И почти каждый раз тучи собирались пополудни, часу около третьего или четвертого.
В начале 1745 года императрица Елизавета со всем двором после долгого пребывания в Москве и Киеве вернулась, наконец, в столицу. Жизнь оживилась. В кабинет ее императорского величества вызван был советник Шумахер, где ему объявили приказ: «…коим образом ея императорское величество указать, изволила, профессором Рихманом сделанный в Академии електрические эксперименты чинить ему, профессору, при дворе, дабы ея императорское величество собственною высочайшею особою действие онаго эксперимента видеть изволила»[10].
Ну чем у нас не Версаль?
Между тем Ломоносов продолжал:
— Понеже из проволоки во время грому подлинные електрические искры происходят, — он говорил как бы сам с собой, не глядя на шагавшего рядом с ним Рихмана, — посему заключаю я, что к тем опытам с м-шенбруковыми и клействовыми склянками никакой електрической махины не надобно. Гром совершенно вместо нея служить может. От сих искр должен также спирт винный, а также нефть, порох и протчее загораться.
Рихман молчал. Не то чтобы его мнение было принципиально несогласно с ломоносовским, но он сначала хотел сам в том удостовериться. Сказывались различие темпераментов и разный подход к проблеме.
— Экой ты, Михаила Васильевич, строптивец. Истинно «ломай нос». Сие все в испытаниях нуждается. Есть ли в искрах громовых достаточно силы и теплоты для зажигания…
Ломоносов шагал, сжавши губы узкой полосой и выставив вперед круглый подбородок. Обманчиво-мягкое лицо его отвердело. Oy и смолоду-то был упрям. И не раз случалось, что когда кто-либо начинал ему перечить, становился несдержан. Однако Рихмана он любил. Уважал за знания, за упорство. Были они почти одногодками, но Рихман определено был профессором раньше. И Ломоносов никогда не забывал, как в начале учения ему, приехавшему из Москвы студенту Славяно-греко-латинской академии, готовящемуся к отъезду в Германию, именно Георг Рихман давал первые уроки немецкого языка…
С основанием Академии наук в России, в Санкт-Петербурге, возникла чуждая русскому обществу колония иностранцев, которые мало соприкасались с той средой, в которую оказались внедрены. Они не были торговцами, не являлись лекарями, мастеровыми, ремесленниками, то есть теми, чей труд был понятен, привычен для русских людей и чье пребывание в стране не вызывало недоумения. В Академию наук большинство специалистов приглашалось не для решения конкретных проблем, а с единой целью — привить в России европейскую образованность. Но для этого мало было набрать хороших и знающих людей. Нужно было сначала, как говорил в свое время Василий Никитич Татищев, «приуготовить землю, на которую сеять». А этому мало помогали реформы, не решали вопрос повинности. Все они — от указов об основании новых школ и расширении старого «книжного почитания» до запрета жениться дворянским детям без минимума образованности — касались внешней, поверхностной жизни государства. Чтобы просвещение вошло в плоть и кровь народные, нужны были свои Коперники и Галилеи, Бэконы, Декарты, Лейбницы. Они должны были не просто усвоить основы новых начал, не просто понять их, но впитать их органически, «переварить» и переосмыслить. И тогда на «приуготовленной земле», на своей национальной основе, развивать дальше новое мировоззрение, понятное широкому кругу соотечественников. Развивать его в русле мировой науки.
Приезжие иноземцы в большинстве своем честно занимались задачами практического изучения России. Но ни цели, поставленные перед ними, ни методы, ни результаты их работы, описанные латынью, на немецком или на французском языках, не были понятны большинству русских. Даже первые переводы этих работ оказывались столь же темными, как и оригиналы. В русском языке того времени отсутствовала терминология, тождественная европейской. Не существовало самого научно-логического строя, способного излагать отвлеченные понятия и естественнонаучные истины. Русские риторы понаторели в спорах богословских, в борьбе против остатков язычества на широких просторах державы, но естественнонаучный язык выработан не был. И потому первые переводы, пытавшиеся передать смысл иноземной учености, были совершенно невразумительны. «Прочный корень науки мог быть положен только, когда ее содержание было принято не на веру, не из подражания, не под давлением чужого авторитета, а самостоятельно продумано и усвоено умом, способным к независимому исследованию, и вошло в его собственную природу. В первый раз это сделано было Ломоносовым, и в этом была его великая заслуга, залог обширного влияния в течение XVIII века и историческое значение в русской литературе»[11].
Можно выдумать порох, открыть планету, вывести новую математическую формулу или изобрести целый математический аппарат и тем самым снискать благодарность человечества. Но только редкие гении способны научить людей думать по-иному, по-новому, способны изменить их представления об окружающем мире, создать новое мировоззрение.
Так и для одного из идущих по набережной — для Георга Вильгельма Рихмана, академика и профессоpa no кафедре теоретической и практической физики Санкт-Петербургской Академии наук, — изучение громовой силы явилось главной задачей, важной самой по себе. Для второго же академика и тоже профессора, только по кафедре химии, Михаилы Васильевича Ломоносова, этот вопрос был одним из примеров единства материального мира. Это был один из камней фундамента нового мировоззрения, которое он вырабатывал и которое должно было прийти к его соотечественникам на смену все еще не изжитой средневековой и церковной схоластике.
Оба с утра присутствовали в заседании Конференции и теперь поспешали домой к обеду, а также в надежде удостовериться в прежних своих обсервациях над электрической силою. Рихман должен был показать сущность опытов своих граверу — мастеру Соколову, поскольку тому было поручено изобразить их на виньетке к предстоящей речи, имеющей быть напечатанной в академической типографии. Господа профессоры дошли до угла Второй линии, на котором обычно прощались, ибо один из них, а именно Ломоносов, жил неподалеку. Дом Рихмана стоял на углу Пятой линии и Большого проспекта. Православные обходили это строение с высокими шестами на крыше, принимавшими гром. От шестов с железными прутьями шли а сени цепи к электрическому указателю, придуманному и сооруженному хозяином.
Однако тучи в этот день были невелики и изрядного грому не обещали.
На крыше ломоносовского дома проволока шла от железного штыря к калитке, а оттуда в сени. Это и была «громовая машина». К ней и спешил Михаил Васильевич. Он остановился в сенях поглядеть на электрический указатель Рихмана. Оба ученых полагали, что сей снаряд позволит им вести непрерывные наблюдения, примечая изменения электрической силы не только во время грозы. Но пока нить висела вдоль железной линейки, не подавая никаких признаков жизни.
В доме собирали на стол, и Лизавета Андреевна окликнула мужа, выговаривая ему за задержку. Он же все ждал и дождался: нить дрогнула, поднялась, а из проволоки без всякого грому посыпались искры.
— Komm mal her… Быстрее, быстрее! Идите сюда и смотрите, какого цвета эти искры, — закричал Ломоносов. Цвет искр был одним из предметов спора с Рихманом. И Ломоносову нужны были свидетели.
Домочадцы, призванные хозяином, робко жались у стенки, подальше от громовой машины, а Лизавета Андреевна — его супруга, которая, несмотря на годы, прожитые в России, с русским языком была в больших неладах, все просила:
— Довольно, Михаил, с меня хватит. Мне страшно. Пойдем обедать, щи остынут.
В этот момент грянуло почти что над головой. Искры брызнули разноцветным каскадом, и все, толкаясь, побежали из сеней. Переждав немного, пошел за обеденный стол и Михаил Васильевич. Но не успел он выхлебать и тарелки щей, как входная дверь распахнулась и в горницу весь в слезах ввалился человек из дворни Рихмана. Утирая глаза, он выговорил:
— Профессора громом зашибло…
Машина для примечания электрической силы была у Рихмана учреждена в шкафу, что стоял в сенях у окошка. Состояла она из железного прута в палец толщиной и длиной в один фут. Нижний конец оного спущен был в хрустальный стакан, отчасти наполненный медными опилками. К сему пруту с кровли дома проведена была сквозь сени проволока железная под потолком. Свидетели происшедшего рассказывали: сначала «указатель електрической» ничего не показывал, и господин профессор рассудил, что гром еще нарочито далеко отстоит. Тогда он позвал гравировального мастера Соколова, сказавши ему, что пока-де опасности никакой нет и тот все как надо может приметить, дабы в точности на виньетке изобразить.
Вскоре после того увидел Соколов, как из прута без всякого прикосновения вышел синеватый огненный клуб с кулак величиной и господину профессору прямо в лоб потрафил. А тот, не издавши и малого голосу, упал назад. В самый момент тот последовал удар такой, будто из малой пушки выпалено было, отчего и оный мастер упал на землю и почувствовал на спине у себя некоторые удары, от которых после усмотрено, что произошли оне от изорванной проволоки, которая у него на кафтане с плеч до фалд знатныя горелыя полосы оставила. Комната наполнилась густым дымом, и Соколов подумал, что молния зажгла дом.
Оттого, поднявшись в беспамятстве, выбежал он на улицу и объявил о сем стоящему недалеко пикету…
Когда жена Рихмана, услышавши столь сильный удар, прибежала в сени, то увидела, что господин профессор без всякого дыхания навзничь лежит на сундуке у стены. Тотчас кликнула она людей и стали его тереть, чтобы «отведать», не оживет ли. Пришел лекарь минут через десять. Старался пустить ему кровь из руки. Однако крови вышло мало, одна капелька, хотя жила, как было усмотрено позже, действительно отворена была. Господин профессор Краценштейн несколько раз, как то делают обыкновенно с задушившимися людьми, зажал господину Рихману ноздри, — дул ему в грудь, но все напрасно.
«Мне, — писал Ломоносов Шувалову, — и минувшая в близости моя смерть, и его бледное тело, и бывшее с ним согласие и дружба, и плач его жены, детей в дому столь были чувствительны, что я великому множеству народа сошедшегося не мог ни на что дать слова или ответа, смотря на того лицо, с которым я за час сидел в Конференции и рассуждал о нашем будущем публичном акте… Между тем умер господин Рихман прекрасною смертию, исполняя по своей профессии должность. Память его никогда не умолкнет: но бедная его вдова, теща, сын пяти лет, который добрую показывал надежду, и две дочери, одна двух лет, другая около года, как об нем, так и о своем крайнем несчастии плачут. Того ради, Ваше превосходительство, как истинный наук любитель и покровитель, будьте им милостивый помощник, чтоб бедная вдова лучшего профессора до смерти своей пропитание имела, и сына своего маленького Рихмана могла воспитать, чтобы он такой же наук любитель был, как его отец. Ему жалованья было 860 рублей. Милостивый государь! Исходатайствуй бедной вдове его или детям до смерти. За такое благодеяние Господь Бог Вас наградит, и я буду почитать больше, нежели за свое».
Смерть Рихмана потрясла всех. Несколько дней спустя Шумахер сделал представление президенту Академии даже об отмене торжественного акта, на котором Михаил Васильевич должен был читать доклад об электрических силах, и тот согласился. Пришлось Ломоносову снова и снова писать к своему покровителю Ивану Шувалову. В конце концов приготовленный им мемуар Шумахер отправил для прочтения почетным членам Академии, жившим за границей, и просил именем президента сообщить о своем мнении. Коварный недруг ожидал неблагоприятных отзывов. Но вот пришел ответ Эйлера из Берлина: «Сочинение господина Ломоносова об этом предмете я прочел с величайшим удовольствием. Объяснения, данные им относительно столь внезапного возникновения стужи, и происхождения последней от верхних слоев воздуха в атмосфере, я считаю совершенно основательными. Недавно я сделал подобные же выводы из учения о равновесии атмосферы. Прочие догадки столь же остроумны, сколько и вероподобны и выказывают в господине авторе счастливое дарование к распространению истинного познания естествоведения, чему образцы, впрочем, и прежде он представил в своих сочинениях. Ныне таковые умы весьма редки, так как большая, часть остаются только при опытах, почему и не желают пускаться в рассуждения, другие же впадают в такие нелепые толки, что они в противоречии всем началам здравого естествоведения…».
Ломоносов раньше других увидел в развитии — новой для человечества области знаний — в электричестве — «великую надежду к благополучию человеческому». И в этом еще раз сказалось гениальное предвидение великого русского ученого.
Во времена Ломоносова засилье церкви, широко бытующие суеверия чрезвычайно осложняли работу ученых в России.
После смерти Рихмана церковь потребовала немедленного запрещения «богопротивных опытов», уверяя, что Рихмана постигла «божья кара». И это мнение находило поддержку и сочувствие не только в конфессиональных кругах.
Ломоносов заранее предполагал возможность такого исхода. И в письме к Шувалову сделал такую приписку: «…чтобы сей случай не был протолкован противу приращения наук, всепокорнейше прошу миловать науки…»
С речами и статьями, доказывавшими, что смерть Рихмана отнюдь не «божеское наказание», а результат неосторожности, выступали ученые в разных странах, поскольку реакция несомненно ухватилась за столь неожиданный «подарок судьбы».
Много сил отдал Михаил Васильевич Ломоносов для продолжения начатых в России работ. Он неустанно искал способы безопасного наблюдения за «електрической громовой силой», написал сочинение «Слово о явлениях воздушных, от електрической силы происходящих». Наконец, по его настоянию Академия наук объявила международный конкурс на лучшую теорию электричества…
Загадка шаровой молнии. XX век
Вернемся еще раз к свидетельству гравировального мастера Соколова, который своими глазами видел, как «из прута без всякого прикосновения вышел синеватый огненный клуб с кулак величиною и господину профессору в лоб потрафил, А тот, не издавши и малого голосу, упал назад».
Рихман был убит шаровой молнией — довольно редкой разновидностью электрического разряда, до сей поры являющегося тайной для науки.
Что это такое? Советский энциклопедический словарь определяет ее так: «Шаровая молния, редко встречающаяся форма молнии, представляющая собой светящееся шарообразное или грушевидное тело диаметром 10-20 сантиметров и больше, образующееся обычно вслед за ударом линейной молнии. Существует от 1 секунды до нескольких минут».
Не знаю, как покажется вам, но по мне — информации в этой справке «негусто». Может быть, попробовать прочитать в том же словаре статью «Молния»? Откроем страницу 832: «Молния, гигантский электрический искровой разряд между облаками или между облаками и земной поверхностью, длиной несколько километров, диаметром десятки сантиметров и длительностью десятые доли секунды. Молния сопровождается громом».
В обоих определениях не очень много общего. Это и понятно. С тех пор как люди перестали видеть в явлениях природы «гнев божий», о шаровой молнии написано много заметок, статей, книг, и все равно никто из ученых не знает, как она образуется и почему существует,
Вот характеристика этого удивительного явления, составленная по огромному количеству наблюдений;
1. Внутренняя энергоемкость — от 0, 1 до 4 кВт*ч;
2. Время существования — от нескольких секунд до 4 мин;
3. Масса — от 0, 5 до 50 г;
4. Плотность — от 0, 0013 до 0, 015 г/см3[12].
Какая точность!
Одним из первых ученых, вполне сознательно описавшим шаровую молнию, был Доминик Франсуа Араго. Правда, и он больше спрашивал, чем объяснял: «Как и где образуются эти скопления весомой материи, сильно пропитанные веществом молний? Какова их природа? По этому поводу в науке существует пробел, который необходимо заполнить».
Эти слова он писал в середине прошлого века в книге «Гром и молния». В 1885 году ее перевели и издали у нас в Петербурге.
Араго был уверен, что шаровая молния — это шар с гремучими газами (соединением азота с кислородом), насквозь пропитанный «веществом молнии». Такой шар, по мнению ученого, возникал в грозовых облаках, заряжался наподобие конденсатора электричеством разных знаков и падал на землю. Изолятором в таком конденсаторе мог служить сухой, уплотненный электрическими силами слой воздуха между заряженными оболочками.
В случае «пробоя» изоляции искра поджигала гремучие газы, и шар взрывался. Если же «пробоя» не происходило, электрическая энергия могла тихо «стечь» с шара, и он так же тихо исчезал.
К сожалению, в гипотезе Араго ни слова не говорилось о «молниевой материи», игравшей не последнюю роль в жизни шаровой молнии.
Потом было еще много предположений о природе этого загадочного явления. Одни авторы считали, что шаровая молния несет в себе весь запас имеющейся энергии. Другие предполагали, что источник ее находится вне шаровой молнии.
Может возникнуть вопрос: если положение дел настолько неопределенно, то как могли составить ту конкретную характеристику, которую я привел? Ведь там даны и масса, и плотность, будто шаровую молнию взвесили и пощупали, есть даже энергоемкость. Как ее определили?
В 1936 году в редакцию английской газеты «Дейли мейл» пришло письмо от читателя из графства Херфордшир. Вот что он писал:
"Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном.
Вода кипела затем в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.
У. Моррис. Дорстоун, Херфорд".
Королевский астроном, которого попросили прокомментировать это письмо, сообщил: "По-видимому, то, что видел ваш корреспондент, представляет собой очень редкое явление, известное под названием… «шаровой молнии»[13].
Сообщение вызвало интерес среди ученых, и они подсчитали примерную энергию, затраченную на кипячение воды в кадушке. Получилось от одного до 3 киловатт-часов. Это, в свою очередь, позволило оценить удельную энергоемкость шаровой молнии как минимум в 100 киловатт-часов.
Аналогичное явление наблюдал у нас в Закарпатье, близ города Перечина, С.С. Мах. «В августе 1962 года, — писал он, — около 11-12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч: она светилась цветами радуги в течение около 10 секунд. Вода из корыта полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0, 3x2, 5 метра. Глубина слоя воды — 15 см. В двух других корытах также были обнаружены сварившиеся лягушки».
В этом случае описываемая шаровая молния должна была иметь значительно большую удельную энергоемкость. Ведь масса выкипевшей воды — почти 100 килограммов.
Из чего же должна состоять шаровая молния, чтобы произвести такое действие? Это наверняка не «горючее вещество», потому что тогда оно должно обладать фантастической эффективностью. Напомню, что даже такое «идеальное горючее», как газ ацетилен, имеет энергоемкость во много-много раз меньшую.
Ученые выдвигали множество гипотез о природе шаровой молнии. И каждую из них время и новые факты низводили с пьедестала.
Интересны представления о шаровой молнии, развитые советским физиком Я. И. Френкелем в 1940 году[14].
«Яков Ильич Френкель был человеком, которого про сто оскорбляло существование непонятных физических явлений… Широко эрудированный физик, он обладал удивительной способностью сопоставлять весьма отдаленные области знания и в то же время легко, отвлекаться от досадных мелочей, часто заслоняющих основные черты явления»[15].
Он считал шаровую молнию вихрем из смеси твердых частиц дыма и пыли с химически активными газообразными продуктами, которые образуются в результате удара обычной молнии. Такой вихрь из раскаленных частиц ярко светится. А циркуляция ионов в нем приводит к возникновению сильного магнитного поля, которое стягивает весь клубок в шар и способствует сохранению его формы.
И действительно, многочисленные наблюдатели отмечают «любовь» шаровых молний к печным трубам и дымоходам. Есть даже свидетельства появления огненных шаров зимой, во время метелей и снегопадов. Не значит ли это, что для существования шаровой молнии необходимы твердые частицы дыма и сажи, пыли и снежинок?
После взрыва-разряда шаровой молнии в воздухе остается дымок с острым запахом.
По расчетам Я.И. Френкеля, энергоемкость шаровой молнии как максимум — 0, 03 кВт-ч, то есть на три с лишним порядка меньше той, что дают подсчеты англичан.
Нет, похоже, что теория, основывающаяся на энергии горения газов, для объяснения природы шаровой молнии не годится. Тогда вернулись к гипотезе чисто электрической природы этого явления. И такое предположение рассматривалось учеными. В 1960 году появилась статья Е. Хилла. В ней он сравнивал шаровую молнию с миниатюрным грозовым облаком, электрические заряды в котором разделены ударом обычной линейной молнии. В небольшом объеме собираются сгустки электрических зарядов различных знаков. Представим себе шаровую молнию, состоящую, как матрешка, из вложенных друг в друга разноименно заряженных слоев. У нас получится сферический многослойный конденсатор, энергоемкость которого оказывается очень незначительной, в тысячу раз меньше рассчитанной Френкелем[16]. Между тем по разрушениям взрыв шаровой молнии приравнивается к взрыву «от сотен граммов до 20 кг тринитротолуола (тола)»[17]. Это весьма солидный заряд взрывчатки. Понятно, что такие свойства молнии не могли не привлечь к ней внимания тех, кто занят разработкой нового оружия. И в декабре 1960 года в американском журнале «Радиоэлектронике» появилась сенсационная статья — «Шаровая молния против ракет».
«Шаровая молния, то есть сгустки плазмы — вещества, находящегося в сильно наэлектризованном состоянии, в котором электронные оболочки атомов сильно разрушаются, может быть использована, по мнению американских физиков, для борьбы против ракет…»[18].
Дальше шло популярное объяснение оригинальной гипотезы выдающегося советского физика П. Л. Капицы, выдвинутой им в 1955 году. Он писал: «Если в природе не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии»[19].
Итак, гипотез много, а загадка остается неразгаданной.
Нет на свете ничего практичнее хорошей теории
В затемненном покое крутится на токарном станке укрепленный стеклянный шар. Нога в грубом черном башмаке и белом чулке упруго нажимает на педаль. Большие ладони скользят по гладкой стеклянной поверхности. Из шара вытянут насосом воздух. И вот разреженное пространство внутри стеклянного шара начинает светиться… «Что видимое сияние в месте, лишенном воздуха, произведено быть может, в том мы искусством уверены…» — запишет позже экспериментатор в тетради. И добавит: «Возбужденная электрическая сила в шаре, из которого воздух вытянут, внезапные лучи испускает, которые в мгновение ока исчезают, и в то же время новые на их места вскакивают, так что беспрерывное блистание быть кажется В северном сиянии всполохи или лучи… вид подобный имеют…» Это писал Михаил Васильевич Ломоносов. Немало времени провел он в «електрической каморе» — в физической лаборатории, где стояли академические приборы.
Долгое время существовало предположение, что полярные сияния происходят, в самой атмосфере. Но однажды в Петербурге, «учинив сравнение с ними» высоты зари, вывел он, что «вышина верхнего края дуги около 420 верст» (примерно 450 км). А это означало, что полярные сияния происходят выше воздушного слоя.
Сегодня специалисты установили, что нижняя граница полярных сияний находится примерно в сотне километров от поверхности Земли и простирается вверх на 100-200 километров, а может подниматься и до 400, 600, а то и до 1000 километров над Землей.
В 1751 году на заседании Конференции Академии наук Михаил Васильевич говорил об электрической природе наблюдаемого явления. Интересно отметить, что Франклин пришел к той же мысли почти одновременно с Ломоносовым. А епископ Бергена Э. Понтопидан, занимавшийся в то же время вопросами натурфилософии, очень образно сравнил Землю с вращающимся стеклянным шаром электрической машины. При этом электрические заряды такой машины он уподоблял вспышкам полярных сияний. Такой вывод в то время был далеко не очевидным. И предположения шведского физика и астронома А. Цельсия о том, что полярные сияния это не что иное, как отблески снегов, лежащих на горных вершинах, казались современникам значительно более убедительными.
Ломоносов был очень приметливым человеком. Но основные его воспоминания о полярных сияниях основывались на детских и отроческих впечатлениях, пока он «жил до возраста в таких местах, где северные сияния часто случаются». И теперь, объявляя сходство их с электрическими разрядами, он считал, что «електрическая сила, рождающая северное сияние», обязана своим существованием тому же трению, только не ладоней о стекло, как в лаборатории, а воздушных потоков друг о друга. Для объяснения полярных сияний это было неверно, но какие далеко идущие аналогии можно вывести из этого предположения, рассматривая, в частности, современный механизм образования грозы.
«Нет ничего практичнее хорошей теории», — говорим мы сегодня, в конце XX столетия. Двести лет тому назад теория с практикой были связаны не столь тесно. В науке об электричестве еще не были открыты даже основополагающие законы, не существовали те основные понятия, которыми мы пользуемся теперь. Хорошая теория электричества была крайне нужна, чтобы от гипотез о механизме электрических явлений перейти наконец к прогрессивной ньютоновской программе — к нахождению механической, силы, измеряющей взаимодействие между наэлектризованными телами.
Потому и возникло предложение Петербургской Академии — «сыскать подлинную електрической силы причину и составить точную ея теорию».
В ту пору, как писал француз Лемонье в статье «Электричество», помещенной в знаменитой «Энциклопедии», издававшейся Д. Дидро, «мнения физиков относительно причины электричества расходятся: все они, впрочем, согласны в том, что существует электрическая материя, которая более или менее собирается вокруг наэлектризованных тел и которая вызывает своими движениями наблюдаемые нами электрические явления, но каждый из них по-разному объясняет причины и направления этих различных движений».
Во Франция теорию Франклина о существовании электрической жидкости, «электрической субстанции», обходили молчанием. Не одобряли ее и в России. Ломоносов и Рихман были противниками ныотонианских сил, предпочитая взгляды Декарта о существовании вихрей во всемирном эфире. По этой причине не соглашались они и с Франклшювой теорией.
К 1756 году, когда окончился срок конкурса, в Академию поступило довольно много работ. Лучшей была признана присланная из Берлина и подписанная именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской Академии. Однако, после того как результаты конкурса были объявлены и работа получила премию, Эйлер признался в обмане — ученые записки принадлежали ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разряжения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.
Несмотря на то что теория Эйлера исходила из картезианских воззрений, отрицавших «электрические материи», и основывалась на явлениях в эфире, Ломоносов, по-видимому, не был удовлетворен ею полностью. В том же 1756 году он написал диссертацию «Теория электричества, разработанная математическим способом», которая осталась неопубликованной., В ней Михаил Васильевич писал: «Электрические явления — притяжение, отталкивание, свет и огонь — состоят в движении. Движение не может быть возбуждено без другого движущегося тела». Электризация, по гипотезе Ломоносова, обусловливалась вращательным движением частиц внутри вещества и в окружающем пространстве.
Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Теории Эйлера и Ломоносова носили чисто электростатический характер. Отрицая движение электрической жидкости — электрического тока, они приводили к неправильному представлению о грозозащите и об устройстве громоотводов.
По мнению Ломоносова, надежным громоотводом могли служить изолированные «электрические стрелы», которые, должны были отводить в землю не электрический заряд, а «електрическую силу». Потому и устанавливать их он предлагал не на крышах зданий, а на пустырях, подальше от строений, «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах (т.е. на зданиях — А.Т.) силы свои изнуряла».
В принципе незаземленный громоотвод тоже способствовал разряду и отводил молнию в землю через окружающий воздух. Но при заземлении этот процесс, конечно, происходил несравненно спокойнее.
Второй надежный способ грозозащиты Михаил Васильевич видел в «потрясении воздуха», в том, чтобы «разбивать громовые тучи колокольным звоном». «Того ради кажется, — говорил он, — что не токмо колокольным звоном, но и чисто пушечной пальбою во время грозы воздух трясти не бесполезно, дабы он великим дрожанием привел в смятение електрическую силу и оную умалил».
Таким образом, более глубокие концепции электричества в принципиальном отношении у Эйлера и Ломоносова на практике приводили к неправильному конструированию громоотводов.
Идеи Франклина в России получили дальнейшее развитие в работе Эпинуса, вышедшей в 1759 году в Санкт-Петербурге. Тридцатитрехлетний профессор астрономии Берлинской Академии наук и астроном Берлинской обсерватории Франц Ульрих Теодор Эпинус всего два года назад переселился в Россию, приняв предложение войти в члены Петербургской Академии.
В первые же годы жизни в Петербурге Эпинус развивает бурную деятельность. Он пишет работу о возвращении комет, о способах «поправления морского компаса и магнитных стрелок», об «умножении силы в натуральных магнитах». И наконец — большое сочинение «Опыт математической теории электричества и магнетизма», изданное отдельной книжкой. Эта работа изобиловала математическими выражениями, все они носили формально-описательный характер и нужны были, по выражению самого автора, лишь для того, «чтобы избежать излишней пространности обычной речи». Никаких расчетов по этим «формулам» делать было нельзя[20]. Однако профессор Эпинус высказал немало замечательных мыслей, характеризующих не только его научную эрудицию, но и подлинный дар научного предвидения. Так, он отмечает, что неизвестный никому вид закона электростатического и магнитостатического воздействия представляется ему похожим по форме на закон тяготения. «Я охотно утверждал бы, — писал он, — что величины изменяются обратно пропорционально квадратам расстояний… В пользу такой зависимости, по-видимому, говорит аналогия с другими явлениями природы».
Пройдет 26 лет, и в 1785 году французский физик и военный инженер Шарль Огюстен Кулон установит основной закон электростатики, подтвердив предвидения Эпинуса. А три года спустя тот же Кулон распространит свой закон и на взаимодействие точечных магнитных полюсов, заложив тем самым основы электро — и магнитостатики.
В уже упоминавшейся выше работе Эпинус использует представление о «сгущении» электрической жидкости, приближаясь тем самым к понятию электрического потенциала[21]. И даже приходит к понятию электроемкости, предвосхитив тем самым английского физика и химика Генри Кавендиша, строго сформулировавшего это понятие 10-12 лет спустя.
В работе Эпинуса есть и другие интересные предвидения, реализованные позже учеными.
Франц Ульрих Теодор Эпинус, физик, член Петербургской Академии наук с 1756 года, родился в 1724 году в городе Ростоке в семье пастора. В том же городе поступил в университет, откуда уходил в Иену, по обычаю буршей, меняющих университеты. Однако, в конце концов, снова вернулся в Росток, где и получил степень доктора медицины.
После окончания учебы Эпинус некоторое время работал приват-доцентом в том же университете, преподавал астрономию и физику. Но вскоре переехал в Берлин, где получил должность профессора астрономии при Академии наук. Одновременно он выполнял обязанности астронома при обсерватории.
В Берлине Эпинус познакомился с молодым, только что окончившим Ростокский университет Иоганном Карлом Вильке.
В то время многие физики были увлечены загадкой удивительных кристаллов, привезенных голландскими купцами в начале столетия с острова Цейлон. Назвали этот камень турмалином, или турмалем. Он бывал разного цвета, и его прозрачные кристаллы ценились наравне с индийскими рубинами и другими драгоценными камня ми. Но физиков привлекало то обстоятельство, что стоило нагреть турмалин на огне, как он тут же начинал притягивать к себе и отталкивать частички золы. Его даже прозвали за это «зольным камнем».
Знахари и «специалисты» черной и белой магии платили за кристаллы турмалина бешеные деньги. Надетый на шею или на палец при восходе солнца турмалин обещал своему владельцу счастье на целый день. Особенно хорошо помогал он в осенние дни. Впрочем, по данным современных ювелирных фирм, турмалин может принести счастье своему владельцу и в феврале, и в мае, и в августе…
В 1717 году удивительные свойства турмалина рассматривались на заседании Парижской Академии. Поскольку его притягивающая сила была признана магнитной, то минерал получил название «цейлонского магнита».
Молодой шведский врач Каролус Линнеус, в будущем знаменитый естествоиспытатель и почетный член многих академий Карл Линней, одним из первых стал сомневаться в магнитной природе силы турмалина. Линнеус читал лекции по минералогии и пробирному искусству, занимался медицинской практикой и еще находил время для обдумывания и подготовки своей «Системы природы».
Линней предположил, что сила притяжения турмалина при его нагревании имеет электрическую природу. И хотя у ученого не было доказательств, он назвал минерал «Lapis electnctis».
После серии опытов Эпинусу и Вильке удалось доказать, что при неравномерном нагревании турмалина на его противоположных сторонах возникают электрические заряды. По сути дела было открыто новое природное явление — еще одно проявление электрических сил, показывающее их связь с теплотой. Результаты опытов Эпинус опубликовал в мемуарах Берлинской Академии. Они обратили на себя внимание ученого мира. И в том же году молодой профессор получил не только лестное, но и выгодное приглашение — переехать в Россию, занять должность профессора физики Петербургской Академии наук.
На новом месте Эпинус проявляет завидную энергию и работоспособность. Он пишет популярные статьи, которые помещаются в академических изданиях. Пишет и ту замечательную работу, с которой мы начали зна комство с ним, — «Опыт математической теории электричества и магнетизма».
Во введении автор рассказывает, как открытый им пироэлектрический эффект в турмалине натолкнул его на мысль о глубоком сходстве электрических и магнитных явлений. Ведь до этого только магнит имел всегда два полюса, а теперь и нагретый турмалин оказался обладателем дипольного эффекта. Вот только почему? В чем причина обнаруженного явления? Однако Эпинус отказывается даже от обсуждения сил притяжения и отталкивания. При этом он ссылается на Ньютона, который также не занимался, по его мнению, выяснением причин всемирного притяжения. Правда, при этом автор трактата, чтобы избежать обвинений в эпигонстве, подчеркивает: «Я отнюдь не считаю их, как поступают некоторые неосторожные последователи великого Ньютона, силами внутренне присущими телам, и я не одобряю учения, которое постулирует действие на расстоянии. Действительно, я считаю несомненной аксиомой предположение, по которому тело не может производить никакого действия там, где его нет». Значит, силы притяжения и отталкивания, действующие на расстоянии, в его работе — лишь условное допущение. По мысли Эпинуса — это универсальное свойство электрических зарядов, точно так.же, как всемирное притяжение — универсальное свойство масс в механике Ньютона. А за субстанцию, обладающую свойствами электрического притяжения и отталкивания, Эпинус принимает некую единую электрическую жидкость, предложенную Франклином в своей теории.
Частицы электрической жидкости отталкиваются друг от друга, но притягиваются обычной материей. Они свободно проникают через поры одних тел и с трудом преодолевают другие. Первые, как мы можем легко понять, являются проводниками электричества, вторые — изоляторами. И все электрические явления, известные современной науке, Эпинус делит на два рода. К одному относит все, что связано с переходом электрической жидкости от одного тела к другому. Примером могут являться искры, возникающие при электризации тел. К другому — притяжение и отталкивание.
По аналогии с гипотезами, высказанными в теории электричества, Эпинус строит и теорию магнетизма. Он предполагает существование магнитной жидкости, частицы которой взаимно отталкиваются. Точно также делятся и тела: одни проявляют индифферентность, безразличие, к частицам магнитной жидкости (они являются аналогами диэлектриков), другие притягивают ее частицы (они являются проводниками).
Правда, закон Ньютона утверждал, что все тела природы связаны друг с другом силами притяжения, а если принять теорию единой электрической жидкости, то она приводила к тому, что материальные частицы должны отталкиваться друг от друга. Это обстоятельство немало смущало Эпинуса и его соратников. Позже ученый выдвинул предположение, что закон Ньютона применим к телам, содержащим естественное количество электрической жидкости. Это позволило обойти затруднения в формальном смысле, но убедительности теории не прибавило. И потому многие выдающиеся физики отказались принять франклиновскую унитарную теорию. Высоко оценивая труды Эпинуса за то, что в них дана приближенная математическая теория взаимодействия электрических и магнитных тел, исследователи все же вернулись к идее электрических жидкостей. Интересно, что и для этого случая вычисления Эпинуса оставались справедливыми.
До появления работы Эпинуса физики были уверены, что взаимодействие электризованных тел с неэлектризованными вполне возможно. Эпинус же утверждал, что лишь после того, как заряд одного тела вызовет появление заряда на другом, они приходят во взаимодействие. Это было, совершенно новым представлением, которое впоследствии пришлось весьма кстати, когда были открыты явления электрической и магнитной индукции и поляризации тел.
Интересно и утверждение петербургского профессора о том, что электрическая материя существует только в телах и отсутствует в пространстве, где действуют электрические силы. Здесь Эпинус довольно близко подходит к понятию электрического и магнитного поля, которое возникло и получило развитие в физике следующего столетия.
Работы Эпинуса сразу же стали широко известны и оказали большое влияние на взгляды физиков того времени, на развитие науки об электричестве. На его труды ссылались Кэвендиш и Кулон, о его теории писали Гауи и французские академики Лаплас, Кузен и Ле-жандр, а также Вольта и Фарадей…
Условия работы в академии были трудные. Одряхлевшего Шумахера заменил, по меткому выражению Ломоносова, «зять его, и имения, и дел, и чуть не Академии наследник» Тауберт — серая посредственность с угодливым характером. Этот академический советник держал себя всегда благопристойно и с достоинством, обладал в высшей степени умением вкрадываться в милость к знатным и пользоваться их расположением. Вместе с тем это был мелкий честолюбец и великим интриган… Другими членами канцелярии были назначены академики Ломоносов и Штелин. Ломоносов и Тауберт уже много лет питали друг к другу враждебные чувства. Понятно, что такое назначение не могло служить дальнейшему успеху работы канцелярии, да и всей Академии в целом.
К сожалению, Эпинус недолго занимался чисто научной деятельностью. Обласканный Таубертом, он полностью перешел на его сторону, стал в оппозицию Ломоносову и другим ученым, занявшись интригами и «искательством».