II. Что можно получать в ядерном реакторе?
II. Что можно получать в ядерном реакторе?
Ядерный реактор позволяет:
— производить плутоний;
— вырабатывать тепловую энергию;
— получать радиоактивные изотопы.
Реакторы, называемые первичными[10], служат для получения плутония, поэтому тепло является в них лишь побочным продуктом. Обычно считают, что в таком реакторе на каждые 1000 квт мощности производится в день 1 г плутония. Таким образом, Маркульский реактор G-1, имеющий мощность 40 тыс. квт, должен ежегодно давать около 15 кг плутония.
Так называемые вторичные реакторы предназначаются в основном для производства тепловой энергии; получаемый при этом плутоний является побочным продуктом.
1. Реактор — источник тепловой энергии.
Как мы уже говорили выше, энергия, высвобождающаяся в результате деления ядер урана, выступает в форме тепловой энергии. Последняя в определенных условиях может либо превращаться в электрическую, либо непосредственно использоваться в качестве источника движения в транспортных силовых установках.
Рассмотрим в общих чертах эти основные способы использования ядерной энергии.
а) Атом как «источник электроэнергии».
Мощность ядерных реакторов измеряется в киловаттах. Но это, так сказать, тепловые киловатты. Чтобы перевести их в электрические, нужно применить формулу Карно с учетом качества производимого тепла, которое зависит от температуры поступающей из реактора жидкости.
На современных тепловых электростанциях коэффициент полезного действия достигает 25 %, в то время как на первых атомных электростанциях он пока не превышает 10–15 %. Это объясняется тем обстоятельством, что расщепление уранового горючего в реакторах не может быть доведено до конца, так как в результате многочисленных столкновений с ядрами урана нейтроны «загрязняют» ядерное горючее, что приводит к замедлению, а в некоторых случаях и к полному прекращению цепной реакции. Например, в реакторе, построенном в Сакле, температура теплоносителя на выходе равна 130°, в реакторе G-1–220°, в реакторе G-2 (второй строящийся в Маркуле реактор) — 280°. В реакторе, установленном на подводной лодке «Наутилус», удается нагреть воду до 315°. Через два года специалисты надеются довести температуру теплоносителя на выходе из реактора до 500°. Тогда к.п.д. на атомных электростанциях будет примерно таким же, как и на тепловых.
При таком невысоком к.п.д. количество электроэнергии, которое можно получать на ядерных электростанциях, сравнительно невелико. Например, мощность реактора G-1 составляет 40 тыс. квт. Но поскольку это только тепловые киловатты, а к.п.д. этого реактора равен 12 %, количество получаемой из этого тепла электроэнергии не будет превышать 5 тыс. квт. Между тем для обеспечения работы самого реактора требуется затратить энергию в 8 тыс. квт. Отсюда можно заключить, что реактор G-1 потребляет больше энергии, чем производит. Впрочем, нельзя забывать, что этот реактор предназначается не для выработки электроэнергии, а для получения плутония.
Лет через пять на земном шаре, вероятно, будет до десятка крупных атомных электростанций мощностью от 100 до 200 тыс. квт каждая.
К 1975 году эта цифра, по всей вероятности, увеличится вдвое. В Великобритании атомные электростанции будут покрывать 40 % всех потребностей в электроэнергии, в остальных странах Европы — 10 %, в США и Канаде — 15–20 %, а в Советском Союзе, по-видимому, еще больше.
Наконец, ученые считают, что к 2000 году атомные электростанции будут обеспечивать удовлетворение трех четвертей мировой потребности в электроэнергии.
Следует отметить, что электричество на атомных электростанциях вырабатывается за счет тепла, являющегося промежуточным продуктом. Поскольку электрические заряды в ядерной реакций не используются и пропадают даром, возникает вопрос, нельзя ли получать электричество непосредственно без промежуточной стадии, что, без сомнения, значительно повысило бы к.п.д. атомных электростанций. Есть все основания полагать, что в ближайшем будущем ученым удастся создать специальные конденсаторы, и эта задача будет решена.
б) Атом как «источник движущей силы».
Одним из основных назначений ядерного реактора является получение электроэнергии, однако ядерная энергия может быть использована также и в качестве источника движения.
Наибольший интерес представляет использование ядерной энергетической установки на подводных лодках, так как она освобождает подводную лодку от того тяжелого груза весом 700–800 т, каким являются запас горючего и аккумуляторы. Первая американская атомная подводная лодка «Наутилус», спущенная на воду в январе 1954 года, к маю 1956 года прошла уже 37 тыс. миль, что в 1,5 раза больше длины земного экватора. Экипаж этой подводной лодки состоит из 85 матросов и 11 офицеров.
«Наутилус» может без дополнительной заправки совершить путешествие вокруг земли. Его подводная скорость, согласно официально опубликованным данным, составляет более 20 узлов. Надводное водоизмещение достигает 2800 т, вооружение — 6 торпедных аппаратов. Механизмы силовой установки занимают половину длины всей лодки, то есть 90 м из 180. В качестве горючего используется обогащенный уран, основным конструкционным материалом, по всей вероятности, является цирконий.
Вторая американская подводная лодка «Си Вулф» была спущена на воду в 1956 году. Внешне она похожа на «Наутилус», но силовая установка имеет другую конструкцию. Кроме этого, ведется строительство еще двух атомных подводных лодок: «Скейт» и «Суорд-фиш».
По имеющимся данным, в настоящее время в США закончено проектирование еще четырех атомных подводных лодок. Специалисты считают, что стоимость атомной подводной лодки в серийном производстве в общем не будет превышать стоимости обычной подводной лодки (20–25 млн. долларов). Опытные образцы, разумеется, будут стоить в 2–3 раза дороже.
Что касается надводного флота, то атомными силовыми установками будут снабжаться, по всей вероятности, тяжелые военные корабли, например авианосцы, и крупные торговые суда. Атомный двигатель значительно облегчит проблему обеспечения кораблей топливом; не исключена возможность, что будущие корабли с атомными силовыми установками при спуске на воду будут снабжаться таким количеством ядерного горючего, которого им хватит до полного выхода из строя.
Хотя в США уже давно ведутся работы по созданию самолета с атомным двигателем, производство таких самолетов, как нам кажется, в ближайшее время осуществлено быть не может, так как атомный двигатель пока еще очень тяжел и громоздок. Но эти недостатки в скором времени будут устранены, и тогда дальность полета атомных самолетов будет ограничиваться только физическими возможностями экипажа.
Что касается использования атомной энергии в двигательных установках наземного транспорта, то здесь, вероятно, придется еще немного подождать. В настоящее время говорят лишь о строительстве атомных локомотивов. Об атомных автомобилях пока нет еще и речи, однако не исключено, что наши внуки будут ездить на машинах только с такими двигателями.
Через пятьдесят лет мир, по-видимому, очень сильно изменится; атомная энергия, которая сейчас делает лишь свои первые шаги, явится причиной глубоких преобразований.
2. Реактор как источник получения радиоактивных изотопов.
Мы знаем, что в природе существует 92 естественных элемента. Кроме этого, в природе существует несколько сот естественных изотопов, а физикам удалось получить искусственным путем еще более тысячи изотопов. Открытие таких изотопов само по себе не имело бы особого значения, если бы среди них не было радиоактивных веществ, называемых радиоизотопами или радиоэлементами. Благодаря своему свойству радиоактивности эти изотопы заняли важное место в науке и получили широкое практическое применение. В природе существует около 40 естественных радиоактивных изотопов, искусственных же радиоактивных изотопов гораздо больше.
Большинство искусственных радиоактивных изотопов в настоящее время получают в ядерных реакторах, подвергая вещество облучению нейтронами; их можно также извлекать из продуктов распада урана. Для производства некоторых радиоактивных изотопов можно использовать протоны высоких энергий, получаемые в ускорителях.
Попадая в ядро какого-либо элемента, нейтрон увеличивает на единицу массовое число А этого элемента, в результате чего образуются новые элементы; некоторые из них обладают свойствами радиоактивности. Так, обычный кобальт, имеющий массовое число 59, превращается в радиоактивный кобальт 60.
Основное преимущество искусственных радиоактивных изотопов заключается в дешевизне их получения и простоте применения.
Обнаружить наличие радиоактивных изотопов сравнительно нетрудно при помощи счетчиков Гейгера — Мюллера, которыми измеряют радиоактивные излучения. Это позволяет прослеживать путь атомов радиоактивных изотопов, называемых поэтому «мечеными атомами».
Невозможно даже в общих чертах описать все способы применения радиоактивных изотопов, число которых увеличивается с каждым днем. Поэтому мы ограничимся описанием лишь наиболее известных способов их использования в медицине, промышленности и сельском хозяйстве.
а) Применение радиоактивных изотопов в медицине.
Радиоактивные изотопы играют в медицине большую роль. Они позволяют установить диагноз, излечить от болезни или по крайней мере замедлить ее развитие, а главным образом — лучше понять физиологические процессы, происходящие в организме.
Благодаря применению радиоактивных изотопов удалось достигнуть значительных успехов в борьбе против рака. Наиболее эффективным способом лечения рака является внутреннее облучение. При старых методах радиотерапии под действием радиоактивных излучений могли поражаться — а иногда даже совсем разрушаться — и здоровые клетки. В настоящее время удается вводить источник радиоактивности непосредственно в опухоль, не поражая при этом нормальной ткани.
Одним из наиболее наглядных методов лечения рака радиоактивными изотопами является облучение при помощи так называемой кобальтовой пушки. Кобальтовая пушка заменяет лечение рентгеновскими лучами и радием и является более экономичной и практичной по сравнению с ними. Тридцать граммов радиоактивного кобальта стоимостью 17 500 долларов испускают такое же количество излучения, как и кусок радия стоимостью 50 млн. долларов, или 17,5 млрд. франков. Кроме того, радий — очень редкий элемент. За 50 лет во всем мире было получено лишь около 2,5 кг радия. Напомним, что этот ценный металл был открыт в 1898 году Пьером Кюри и Марией Склодовской-Кюри совместно с сотрудничавшим с ними Бемоном. Для того чтобы получить 1 г радия, нужно переработать 3 т урановой руды. Кобальт 60 очень сильно отличается от радия периодом полураспада: он имеет период полураспада примерно 5,5 лет, в то время как радий — 1622 года. Кобальт может применяться либо для местного облучения, например в форме игл, подобных радиевым, либо для общего облучения (кобальтовая пушка).
Для лечения заболеваний различных желез употребляются радиоактивные изотопы тех элементов, которые поглощаются этими железами. Так, для лечения рака щитовидной железы применяется радиоактивный иод, который поглощается этой железой.
Некоторые заболевания, например рак мозга, можно лечить радиоактивным золотом. Маленькие шарики из смеси радиоактивного золота с радиоактивным фосфором вводятся в опухолевую ткань, которая разрушается под действием радиоактивных излучений, причем соседние ткани остаются невредимыми.
Скорость тока крови в организме можно измерять, добавляя в кровь красные кровяные тельца, меченные радиоактивным фосфором. При помощи радиоактивного фосфора можно также обнаружить белокровие. Если организм здоров, то через 4–5 дней с мочой уходит 50 % радиоактивного фосфора, а если болен — то лишь 10 %.
Наконец, благодаря радиоактивным изотопам удалось установить, что прежнее представление об обмене веществ в организме было ошибочным. Ученые заметили, что живой организм не сразу выбрасывает неусвоенные питательные вещества. Обновление веществ происходит непрерывно: новые клетки врастают в ткань, в то время как умершие и, следовательно, ненужные клетки разрушаются. Так, например, радиоактивный кальций позволил установить, что костные ткани человека постоянно обновляются.
Эти открытия проливают новый свет на процесс самой жизни и ставят новые вопросы, над которыми раньше даже не задумывались. В самом деле, если клетки мозга и других тканей непрерывно обновляются, чем можно объяснить тот факт, что характер и поведение человека в течение долгих лет жизни остаются неизменными, хотя физически он никогда не бывает одним и тем же?
б) Применение радиоактивных изотопов в сельском хозяйстве.
Большую помощь оказал науке метод, заключающийся в том, что радиоактивные вещества вводят в растения с целью проследить процесс их питания. Этот метод помог, в частности, повысить урожайность сельскохозяйственных культур, а следовательно, увеличить количество производимых в мире продуктов.
Так, было установлено, что если фосфатом посыпать листья растений, то усвоение его происходит на 95 %, в то время как при введении фосфата в землю оно не превышает 10 %.
Этот метод помог получить новые виды растений, более стойкие к некоторым заболеваниям, а также различные интересные гибриды.
Метод «меченых атомов» позволил уточнить множество деталей. Теперь известно, например, что протеины куриных яиц образуются не из тех веществ, которыми курицу кормили недавно, а из тех, которыми ее кормили месяц тому назад. Стали известны также продолжительность жизни комаров и расстояния, которые они могут пролетать.
Интересные результаты были получены также в области хранения продовольственных товаров. Например, картофель после облучения его гамма-лучами может с успехом храниться при постоянной температуре 10 °C в течение двух лет. Это позволяет обойтись без дорогих холодильников. Разработанный недавно в США метод облучения продовольствия гамма-лучами позволяет облучать до 15 т продуктов в день. Такие же интересные результаты были получены в области хранения медикаментов.
Радиоактивные изотопы помогают также уничтожать сельскохозяйственных вредителей при хранении зерна. Подвергая облучению целые зернохранилища, можно, не прибегая к вредным для человеческого организма химическим препаратам, полностью уничтожить насекомых и их личинки, в том числе и долгоносика. Если учесть, что потери зерна от таких вредителей составляют 15 % урожая, станет ясно, что применение этого нового метода дает значительную экономию. Член американской Комиссии по атомной энергии доктор Либби в докладе, сделанном в начале 1956 года, заявил, что экономия, полученная в США в результате применения радиоактивных изотопов только в этой области, достигла 30 млрд. долларов.
Наконец, следует отметить, что радиоактивные изотопы помогут решить проблему фотосинтеза. Фотосинтез, или синтез под действием света, — это современное название процесса усвоения растениями хлорофилла, в котором участвует световая энергия. Изучение роста живых организмов позволяет надеяться, что в скором времени эта проблема будет решена.
Получение органической материи путем фотосинтеза является самой важной задачей современной химии.
Ученые подсчитали, что кукуруза на площади в 1 га связывает в год от 1,5 до 2 т углерода.
Общее количество углерода, связываемого ежегодно всей растительностью земного шара, оценивается в 35 млрд. т, а количество связываемой в результате фотосинтеза световой энергии в переводе на тепловую составляет миллиард миллиардов больших калорий!
в) Применение радиоактивных изотопов в промышленности.
Способы применения радиоактивных изотопов в промышленности многочисленны и разнообразны. Их использование позволяет, например, американской промышленности экономить ежегодно миллиарды долларов. Среди многочисленных способов применения радиоактивных изотопов ведущее место в настоящее время занимает гамма-дефектоскопия. Это не что иное, как разновидность рентгеновской дефектоскопии, в которой рентгеновская трубка заменена источником радиоактивного кобальта. Излучаемые радиоактивным кобальтом гамма-лучи обладают большей проникающей способностью, чем рентгеновские лучи. Они проходят сквозь проверяемую деталь и, если в ней есть пустоты или трещины, вызывают в соответствующих местах почернение фотопластинки. Так получается отпечаток, на котором отчетливо видны все дефекты. Этим способом можно контролировать качество литья и сварных швов на глубину 10–15 см, в то время как рентгеновские лучи позволяют осуществлять такой контроль на глубину не более 1 см.
Можно назвать также и другие способы применения радиоактивных изотопов: контроль износа поршневых колец и шин, обнаружение утечек в подземных трубопроводах, измерение уровня жидкостей в закрытых резервуарах, измерение толщины различных материалов, производимых в листах или рулонах, улучшение производства бензина в лабораторных условиях путем облучения гамма-лучами сырой нефти, снятие статических зарядов и, наконец, решение различных специальных проблем в области гидрологии (поиски источников водоснабжения и контроль за обмелением портов в результате наноса песка). О каждом из вышеназванных способов применения радиоактивных изотопов можно было бы, конечно, говорить очень долго.
г) Применение радиоактивных изотопов для изучения прошлого.
Теперь следует остановиться на роли атома в качестве помощника историка, так как он позволяет точно определить возраст различных древних предметов. Измеряя радиоактивность последних, можно определить их «возраст» по количеству содержащегося в них углерода 14. Со смертью организма цикл углерода 14 прекращается, и, следовательно, количество содержащегося в организме углерода 14 после его смерти постоянно уменьшается. Это уменьшение происходит медленно, так как период полураспада углерода составляет 5700 лет. Так, например, если измерять радиоактивность срубленного 5700 лет назад дерева, то счетчик Гейгера — Мюллера зарегистрирует всего 6 бета-импульсов в минуту, в то время как у недавно срубленного дерева он покажет 12 импульсов, а у дерева, срубленного 11 400 лет назад, — всего 3 импульса в минуту.
Таким образом, удалось установить, что каменное сооружение Стонхендж в Англии имеет возраст 4 тыс. лет, в пещере Ляско во Франции 15 тыс. лет тому назад уже жили люди, что верхний палеолит в Дордони был 20 тыс. лет тому назад, а знаменитые рукописи, найденные на побережье Мертвого моря, относятся к 30–40 годам нашей эры.
Наконец, применяя некоторые другие методы, ученые точно установили возраст нашей планеты и время существования различных геологических эпох.
Мы в самых общих чертах рассказали о применении радиоактивных изотопов. Возможности, которые они перед нами открывают, сейчас даже трудно себе представить.
В самом ближайшем времени радиоэлементы станут помощниками исследователей, помогут улучшить условия жизни людей и расширить их знания и поле деятельности.