БЕГ ВРЕМЕНИ МОЖНО ЗАМЕДЛИТЬ!

We use cookies. Read the Privacy and Cookie Policy

БЕГ ВРЕМЕНИ МОЖНО ЗАМЕДЛИТЬ!

Здесь мы начинаем рассказ о великих достижениях науки, относящихся к нашему, XX веку. Пожалуй, удивительнейшее открытие было сделано в самом начале его А. Эйнштейном, создавшим так называемую теорию относительности. Он показал, что никакого «абсолютного времени», никакой единой неизменной реки времени, совершенно одинаково несущей в себе все события Вселенной, не существует.

«Величайшим открытием Эйнштейна, составившим не только краеугольный камень теории относительности, но и поворотный пункт в общем физическом и философском понимании проблемы пространства и времени, было открытие того, что абсолютного времени в действительности нет», — писал академик А, Александров.

Время, очевидно, проявляет себя как река с неизменной скоростью только в привычных нам условиях сравнительно медленных движений и не очень больших энергий взаимодействий. В других — непривычных — условиях свойства времени иные! Поговорим об этом подробнее.

Открытие относительности времени содержится в созданной А. Эйнштейном в 1905 году теории относительности. Об А. Эйнштейне написано много книг, наверняка больше, чем о каком-либо другом физике. Этому было несколько причин. Мы приведем здесь мнение известных ученых, лично знавших его, и высказывания самого А. Эйнштейна, которые помогут хоть в малой степени создать образ этого человека и выявить истоки его огромной популярности.

Прежде всего, конечно, он был величайшим исследователем, и открытия его касались самых загадочных свойств времени и пространства. Загадочность всегда влечет к себе тех, кто хочет хоть сколько-нибудь серьезно поразмыслить о мире, о сущности бытия (и кто находит в себе силы уделить время для этого в вечной сутолоке жизни). Советский физик-теоретик академик И. Тамм писал о нем: «Эйнштейн, которого Ленин назвал одним из великих преобразователей естествознания, по праву сопоставляется с Ньютоном. Это сопоставление справедливо, по-моему, не только в том смысле, что Ньютон и Эйнштейн знаменуют собой вершины человеческих достижений в познании природы, вершины, доминирующие над 300-летним периодом развития точных наук и непосредственно перекликающиеся друг с другом на этом громадном расстоянии. Эйнштейна и Ньютона можно, по-моему, сопоставить и в том смысле, что Ньютон заложил основы современного естествознания, а творение Эйнштейна — теория относительности — увенчало собой здание классической физики».

К физическим открытиям А. Эйнштейна мы еще вернемся. Но как бы велики ни были эти открытия, они не могут полностью объяснить всемирную славу его, причем слава эта устойчиво держится на протяжении всего XX столетия. Последнее обстоятельство особенно удивительно, так как в наше время переменчивая мода чуть ли не ежедневно порождает новых кумиров.

Все дело еще и в личности А. Эйнштейна. Писатель В. Каверин как-то заметил: «Я выше всего ценю в людях доброту и мужество. Вероятно, сочетание этих черт и делает человека порядочным. Эти два качества должны определять его нравственную позицию».

Наверное, приведенные слова точно характеризуют суть понятия — хороший человек. Очень нелегко на протяжении жизни выдержать испытания на эти два, казалось бы, таких простых и ясных критерия. Далеко не каждому это удается, а некоторые, увы, к этому и не стремятся.

А. Эйнштейн был добрым и мужественным. Доброта его, по свидетельству хорошо его знавших ученых, исходила от его необыкновенно ясного ума и не была подвержена необдуманным порывам чувств и эмоций. Он помогал очень многим людям. Особенно его заботили судьбы ученых, подвергнутых гонениям в Германии после прихода к власти Гитлера. Польский физик Л. Инфельд пишет: «Никогда в жизни не приходилось мне наблюдать столько доброты, совершенно оторванной от какого-либо чувства. Хотя только физика и законы природы вызывали у Эйнштейна подлинные эмоции, он никогда не отказывал в помощи, если находил, что нужно помочь, и считал, что эта помощь может быть эффективной. Он писал тысячи рекомендательных писем, давал советы сотням людей, часами беседовал с сумасшедшим, семья которого написала Эйнштейну, что он один может помочь больному».

Не правда ли — великий пример доброты и милосердия, которые становятся иногда столь большим дефицитом в нашей часто жестокой жизни! И эта чистота помыслов тем более ценна, потому что исходила от человека, казалось бы, целиком погруженного в формулы и весьма далекого от реальной жизни. Впрочем, он и был бесконечно далек от всей жизненной суеты — той ее части, которая не касалась общечеловеческих ценностей. Он старался как можно меньше сталкиваться с мелочами жизни, экономя время для главного. А. Эйнштейн носил длинные волосы, чтобы реже пользоваться услугами парикмахера, носил кожаную куртку, чтобы подольше не думать о покупке нового пиджака, не носил носков и подтяжек, не пользовался ночными рубашками или пижамами. Погруженный в свои думы, часто ел чисто автоматически, не замечая, что он проглатывает. И был мужествен! Всегда выступал за справедливость, не заботясь о неприятных для него лично последствиях своих поступков. Был вовлечен в антивоенные демонстрации еще во время первой мировой войны. Всю жизнь выступал за мир и единение людей.

А. Эйнштейн, обеспокоенный возможностью создания атомной бомбы гитлеровской Германией, был одним из тех, кто способствовал началу создания этого оружия в США.

Еще до первого взрыва атомной бомбы он, понимая, какую опасность таит в себе это оружие для человечества, выступил за международный контроль над ядерным оружием.

Приведем здесь отрывок из его письма к Л. Инфельду, датированного 1950 годом, но более чем актуально и мудро звучащего сегодня. «Вы знаете, как высоко я ценю стремление к подлинному миру. Мне кажется, что в нынешней ужасной ситуации прямые мероприятия, которые здесь входят в игру, не имеют видов на успех, потому что повсюду пошатнулось доверие к честным намерениям другой стороны. У меня нет никаких прямых предложений. В настоящий момент могут быть приняты в расчет лишь некоторые отдельные шаги разных лагерей, способные постепенно восстановить доверие, без которого нет конкретных путей к сохранению международной безопасности».

Неудивительно, что такой человек вызывал ненависть у людей, являющихся его антиподами. Была создана даже антиэйнштейновская организация, и раздавались подстрекательства к его убийству.

А вот как сам он определял свою нравственную позицию в письме к своему другу, немецкому физику М. Борну: «Что должен делать каждый человек — это давать пример чистоты и иметь мужество серьезно сохранять этические убеждения в обществе циников. С давних пор я стремлюсь поступать таким образом — с переменным успехом».

И сам М. Борн заключает: «…речь идет… о чистоте и о честности в мыслях и чувствах. И в том, и в другом отношении мы чтим Эйнштейна как образец и как учителя».

Хотелось бы отметить еще отношение А. Эйнштейна к своей необычной славе. Он был к ней совершенно равнодушен. Приведем снова свидетельство Л. Инфельда: «Эйнштейн совершенно не сознавал своей славы; он являет собой единственный, пожалуй, пример человека, на которого величайшая слава не оказала никакого воздействия… Медаль Нобелевской премии вместе со многими другими и десятками почетных дипломов лежала в ящике, в комнате, где их хранила секретарша, и я уверен, что Эйнштейн не имел даже представления, как выглядит эта медаль».

Долгая слава А. Эйнштейна, которая сопутствовала ему при жизни и только возрастает после смерти, объясняется полным соответствием величия этого человека как ученого его стремлению защищать угнетенных и служить прогрессу человечества. Сочетание этих высоких нравственных норм с необыкновенными открытиями таинственных свойств природы, лежащих за пределами наглядного воображения людей, явилось надежным основанием вечной его славы. Необычайно высоко ценил его наш физик, лауреат Ленинской и Нобелевской премий Л. Ландау. Вот как об этом вспоминает

В. Гинзбург: «…Ландау имел «шкалу заслуг» в области физики. Шкала была логарифмическая (классу 2 отвечали достижения в 10 раз меньше, чем для класса 1). Из физиков нашего века класс 0,5 имел только Эйнштейн, к классу 1 относились Бор, Дирак, Гейзенберг и ряд других… Ландау, как видно… из сказанного… ставил Эйнштейна выше всех физиков нашего века, и это мнение просто бесспорно».

Закончить небольшое отступление, касающееся личности А. Эйнштейна, я хотел бы двумя его высказываниями. (Это высказывание из письма польскому физику Л. Инфельду, датированного 1950 годом).

Первое звучит удивительно актуально сегодня. «Раньше человек был, по существу, лишь игрушкой в руках слепых сил; сегодня он, кроме того, стал игрушкой в руках бюрократов. А все же он на это соглашается. Знаете ли Вы изречение Лихтенберга: «Человек не многому учится на опыте, так как каждая новая глупость представляется ему в новом свете».

Второе высказывание характеризует отношение А. Эйнштейна к жизни вообще и особенно подчеркивает гармонию его внутреннего мира, всегда и во всем согласного с естественным ходом процессов, определяемых законами природы: «Жизнь — это возбуждающее и великолепное зрелище. Она мне нравится. Но если бы я узнал, что через три часа должен умереть, это не произвело бы на меня большого впечатления. Я подумал бы о том, как лучше всего использовать оставшиеся три часа. Потом я бы сложил свои бумаги и спокойно лег, чтобы умереть».

Таков был создатель теории относительности. Что же утверждает эта теория?

Она основана на двух постулатах, которые являются обобщением опытных фактов. Первый из них гласит, что равномерное поступательное движение никак не сказывается на любых физических явлениях.

Мы сталкивались с этим обстоятельством, когда говорили о галилеевском принципе относительности движения. Но в постулате Эйнштейна есть весьма существенное обобщение. Как читатель помнит, Г. Галилей говорил только о механических явлениях — о движении предметов, брошенных человеком, о полетах мух и т. д. Движение корабля, например, на них никак не сказывалось. А. Эйнштейн же подчеркивает, что не только механические движения, но и любые другие явления, например электромагнитные, в каюте корабля будут протекать также совершенно одинаково, независимо от того, движется корабль или нет.

Второй постулат теории относительности гласит, что скорость света в пустоте всегда одна и та же, не зависит от движения ни источника, ни приемника света и равна (по современным данным) с = 2 999 792 456,2 м/с.

Если первый постулат принимается нами как вполне естественный, то второй вызывает серьезные недоумения.

Действительно, если, скажем, прожектор и наблюдатель покоятся друг относительно друга и наблюдатель измеряет скорость света, идущего от прожектора, как величину с, то, казалось бы, когда наблюдатель будет двигаться навстречу световому лучу, то по отношению к нему скорость света увеличится и будет больше с. Но мы теперь уже знаем, что многочисленные опыты и наблюдения показали, что этого не происходит: скорость света остается прежней. И все же порассуждаем еще на эту тему.

рис. 1

Пусть в быстро летящей ракете наблюдатель посылает световой сигнал от потолка к полу, который, отразившись от зеркала на полу, возвращается к потолку (рис. 1). Наблюдатель в ракете видит, что этот луч идет туда и обратно точно по одному и тому же пути. Неподвижный же наблюдатель вне ракеты видит, что луч света, летящий от потолка к полу и обратно, перемещаясь вместе с ракетой, совершает V-образный путь, который больше, чем только «вниз и вверх» для наблюдателя в ракете. Значит, и скорость светового сигнала с точки зрения внешнего наблюдателя должна быть больше, чем для наблюдателя в ракете.

Но стоп! Вспомним, что скорость сигнала есть отношение длины пути ко времени его прохождения. Путь для внешнего наблюдателя больше, это так! Значит, скорость будет тоже больше? Однако это было бы так, если время прохождения луча для обоих наблюдателей было бы одинаковым! — это последнее кажется очевидным. Ведь в обоих случаях это время распространения сигнала «туда и назад». Да, конечно, но только, если мы считаем, что для обоих наблюдателей — и для неподвижного и для движущегося — время течет одинаково! Но какие в этом могут быть сомнения? Ведь это же время — общая для всех длительность.

В этом и заключается загвоздка. Мы молчаливо считаем, что время для обоих наблюдателей течет одинаково. Однако что, собственно, заставляет нас так считать?

Так заставляет нас считать опыт. Для всех ситуаций, известных из практики, мы знаем, что часы тикают в одинаковом темпе (если они исправны) независимо от движения, иными словами, что время течет одинаково. По окончании путешествия и неподвижные часы, и те, которые двигались, покажут одинаковое время. Но это только потому, что мы имеем дело с медленными движениями! Опыты Майкельсона — Морли, а затем и других были первым указанием на то, что при быстрых движениях вывод об одинаковом темпе течения времени будет неверен!

А. Эйнштейн был первым, кто ясно осознал этот факт. Сделать это было очень трудно. Надо было не только полностью разобраться во всех результатах многочисленных экспериментов, но самое главное — полностью отрешиться от прежних стереотипов мышления, которые складывались в науке длительное время и казались незыблемыми.

Вывод теории Эйнштейна состоит в следующем. Если какой-либо наблюдатель изучает процессы в быстродвижущейся по отношению к нему «лаборатории», то эти процессы текут медленнее, чем такие же процессы в его «лаборатории». Например, на быстролетящей ракете медленнее тикают часы, медленнее стучит сердце космонавта, медленнее текут в его теле все биохимические процессы, медленнее колеблются электроны в атомах и т. д. Все, абсолютно все процессы замедляют свой темп, а это значит, что медленнее течет само время. Замедление времени тем больше, чем больше скорость ракеты. Если скорость ракеты приближается к скорости света, то темп протекания времени приближается к нулю (к остановке времени) и все процессы становятся бесконечно долгими. При скоростях малых (скажем, при наших повседневных земных) по сравнению со скоростью света замедление времени столь ничтожно, что совершенно незаметно.

У читателя может закрасться сомнение, что указанное замедление процессов является, так сказать, только видимым, именно когда наблюдатель рассматривает быстро проносящуюся мимо него ракету. Ведь ракета в разные моменты времени находится от наблюдателя на разных расстояниях, и свет, который несет наблюдателю картину процессов на ракете, покидает ракету в разные моменты времени и проходит разный путь до наблюдателя, затрачивая тем самым разное время. Может быть, все дело в том, что световые сигналы по-разному запаздывают, достигая наблюдателя, и это искажает истинную картину происходящего на ракете?!

Нет, все сказанное о замедлении времени относится к действительному темпу процессов с учетом разного запаздывания световых сигналов, идущих к наблюдателю. Иными словами, это истинное замедление всего происходящего на ракете с точки зрения внешнего наблюдателя.

Наверное, для тех, кто впервые слышит о замедлении времени, с этим фактом очень трудно примириться. Я, например, начал пытаться в этом разобраться, когда учился в пятом классе, и мне потребовались годы, чтобы до конца понять, в чем здесь дело. О трудности восприятия теории относительности мы еще поговорим.

Спрашивается, а существуют какие-либо прямо наблюдаемые факты, свидетельствующие о том, что время на быстродвижущемся теле течет медленно? Да, такие факты существуют, и они, конечно, являются самым веским аргументом в пользу правильности этого вывода теории относительности.

Мы уже подчеркивали, что замедление времени становится заметным только при приближении скорости тела к скорости света. Для разгона больших тел до таких скоростей потребовались бы огромные энергии, и пока в земных условиях это неосуществимо. Иное дело — элементарные частицы. Физики уже давно научились разгонять их до субсветовых скоростей на специальных установках, называемых ускорителям«. Изучение процессов с быстролетящими частицами полностью подтвердило выводы теории относительности.

Вот что происходило в одном из экспериментов с частицами, носящими название положительно заряженных пи-мезонов. Эти частицы неустойчивы и после рождения в определенных процессах быстро самопроизвольно распадаются. Если рождается много таких частиц и все они движутся с малыми скоростями, то всего через семнадцать миллиардных долей секунды половина их распадается. Это так называемое время полураспада. Еще через семнадцать миллиардных секунды распадается половина оставшихся частиц и т. д.

Если же пи-мезоны разогнать до скорости, составляющей девять десятых скорости света, то течение времени на них замедлится и частицы должны жить по нашим часам дольше. Это действительно наблюдалось в реальном эксперименте. Время полураспада таких быстролетящих частиц оказывается равным тридцати девяти миллиардным долей секунды — более чем в два раза больше, чем для покоящихся частиц. Результат полностью согласуется с выводами теории.

Еще один пример. В нашу атмосферу из космического пространства постоянно попадают частицы, имеющие большую кинетическую энергию. Такие частицы называют космическими лучами. При взаимодействии этих космических лучей с частицами верхних слоев атмосферы рождаются разные новые элементарные частицы. Среди них есть так называемые мю-мезоны. Это тоже очень недолговечные частицы. Они живут всего около двух миллионных долей секунды. Такова продолжительность их жизни, когда частицы покоятся относительно наблюдателя. При рождении в верхней атмосфере мю-мезоны могут иметь скорость, равную девяносто девяти процентам скорости света. Если бы время на них не замедлялось, то за свою продолжительность жизни — две миллионные доли секунды — они могли бы пролетать всего около шестисот метров. Измерения же показывают, что они пролетают до распада многие километры! Это происходит потому, что время на столь быстролетящих частицах течет примерно в семь раз медленнее, и «для нас» они живут во столько же раз дольше, успевая пройти такой большой путь.

Приведем еще более разительный пример. Среди частиц космических лучей встречаются протоны (ядра атомов водорода), летящие столь быстро, что скорости их отличаются от скорости света на ничтожную величину — только в двадцатой (!) значащей цифре. Время на них идет в десять миллиардов раз медленнее, чем у нас. Если по нашим часам такой протон тратит около ста тысяч лет, чтобы пересечь нашу звездную систему — Галактику, то по своим «собственным часам», то есть по своему времени, он пересекает Галактику всего за… пять минут!

Ну хорошо, скажет читатель, это все касается мельчайших частиц вещества. А наблюдается ли где-либо в природе заметное замедление времени при движении макроскопических тел?

Да, и такие явления известны. Они наблюдаются астрономами. В конце 70-х годов группа американских астрономов во главе с Б. Маргоном обнаружила сверхбыстрые выбросы струй газовых масс из двойной звездной системы, носящей название SS 433. Звезды в такой системе обращаются вокруг общего центра масс, связанные силой взаимного тяготения. Система находится от нас на расстоянии около десяти тысяч световых лет. (Один световой год — расстояние, проходимое светом за год и равное приблизительно десяти тысячам миллиардов километров.) Вследствие сложных процессов, о которых мы здесь говорить не будем, из системы истекают в противоположные стороны две мощных газовых струи со скоростями около восьмидесяти тысяч километров в секунду каждая. Это почти треть скорости света! Чтобы представить мощность потоков в SS 433, приведем такую цифру: за секунду в струях выбрасывается миллиард миллиардов тонн газа.

При столь большой скорости согласно формулам теории относительности время в газовых струях должно течь на несколько процентов медленнее, чем у нас. Конечно, это не такое сильное замедление времени, которое было в случае быстрых элементарных частиц, но оно все же заметно и, конечно, с легкостью может быть измерено. Струи истекающего газа состоят главным образом из нагретого водорода. В земных лабораториях нагретый водород излучает электромагнитные волны строго определенной частоты. Если изучать излучение водорода с помощью спектроскопа, то видно, что водородный газ светит в отдельных линиях определенного цвета, соответствующего частотам колебаний испускающих свет электронов.

При замедлении времени в быстролетящих струях должна уменьшаться частота испускаемых водородом спектральных линий, свет должен краснеть. Это в действительности и наблюдается.

Заметим, что изменение частоты света, то есть его цвета, происходит при движении источника относительно наблюдателя и по другой причине, не связанной специально с теорией относительности. Это известный всем со школьной скамьи эффект Доплера: когда источник движется на нас, то частота световых волн, воспринимаемых нами, увеличивается, цвет света становится более фиолетовым. При удалении источника свет краснеет. Разумеется, эти эффекты никак не связаны с замедлением течения времени.

В случае рассматриваемой здесь звездной системы SS 433 эффект Доплера также наблюдается. Но система эта так устроена, что направление выброса струй все время меняется в пространстве с периодом в 164 дня. Дважды за этот период выброс струй происходит точно поперек нашего луча зрения, в картинной плоскости. В эти моменты газ в струях не приближается к нам и не удаляется от нас и никакого изменения частоты из-за обычного эффекта Доплера не происходит. (Мы не рассматриваем здесь сравнительно небольшую скорость движения всей системы SS 433 по отношению к нам.) Вот в эти моменты и наблюдается астрономами покраснение спектральных линий водорода, вызванное в чистом виде замедлением времени из-за быстрого движения.

Скажем еще, что замедление времени из-за достаточно быстрого движения было измерено с помощью очень точных атомных часов, помещенных на обычном рейсовом пассажирском реактивном самолете. Правда, при этом приходилось учитывать и другие эффекты, влияющие на ход часов.

Можно подвести итог. Как бы ни казался парадоксальным вывод А. Эйнштейна о том, что на быстро движущемся теле время течет медленнее с точки зрения внешнего наблюдателя (относительно которого происходит движение), этот вывод надежно проверен прямыми экспериментами, и никаких сомнений в нем быть не может.

Итак, время относительно. Абсолютного времени не существует.

Мы уже видели, что скорость света играет в теории Эйнштейна особую роль. С этой скоростью распространяются в пустоте все электромагнитные колебания любой частоты: и самые низкочастотные радиоволны, и видимый свет, и высокочастотные рентгеновские лучи, и ультражесткое гамма-излучение. По отношению к любому наблюдателю эта скорость остается одной и той же.

Теория утверждает, что скорость света самая большая из всех возможных в природе скоростей. Как метко выразился советский астрофизик А. Чернин: «Это абсолютный рекорд скорости».

Но что мешает нам разогнать тело до скорости больше скорости света?

Давайте проследим, что будет происходить с телом, если на него будет действовать постоянная сила, разгоняющая его до все большей и большей скорости. И. Ньютон считал, что если сила будет действовать достаточно долго, то тело приобретет сколь угодно большую скорость. Но по теории Эйнштейна с ростом скорости будет расти и масса тела, служащая мерой инерции, то есть мерой «сопротивляемости» тела действующей силе. Этот рост массы является следствием замечательного открытия Эйнштейном эквивалентности массы и энергии. С ростом скорости растет и кинетическая энергия тела, а значит, растет и его масса. Рост массы тела приводит к тому, что действующей на него силе все труднее увеличивать скорость. С приближением же ее к световой его масса растет неограниченно, стремится к бесконечности, и поэтому никакая сила не может заставить скорость тела перевалить световой барьер. Световая скорость является предельной для распространения любых полей и вообще для передачи любой информации.

Познакомимся теперь с еще одной особенностью времени, открытой А. Эйнштейном. Представим себе поезд, движущийся с очень большой скоростью. Один физик стоит посередине длинного открытого вагона-платформы в составе этого поезда. Другой физик стоит на земле, и поезд проносится мимо него. На передней и задней стенках вагона-платформы укреплены лампочки, которые можно зажигать. Устроим эксперимент с зажиганием лампочек так, что свет от обеих лампочек одновременно достигает «поездного» физика, как раз когда он проносится мимо «наземного» физика. И «поездной» и «наземный» физики видят обе вспышки одновременно. Какие выводы они сделают о моментах зажигания лампочек?

«Поездной» физик скажет: «Я стою посередине платформы, расстояние до обеих лампочек одинаково. Увидел я вспышки одновременно, и так как скорость света всегда одинакова и равна с, то, очевидно, лампочки вспыхнули одновременно».

Заключение «земного» физика будет иным: «Я увидел вспышки одновременно, когда рядом со мной была середина платформы с «поездным» физиком и лампочки в этот момент находились от меня на одинаковом расстоянии. Но свету надо некоторое время, чтобы дойти от лампочек до меня, а поезд движется. И значит, когда свет покидал лампочки, задняя (по ходу поезда) лампочка была от меня дальше, чем передняя. Поэтому свет прошел от них неравный путь, от задней он прошел больший путь. Скорость света всегда постоянна и равна с. Я увидел обе вспышки одновременно, поэтому от задней лампочки свет должен быть испущен раньше, чем от передней. Вспышки произошли неодновременно».

Мы видим: то, что происходит одновременно на быстро движущемся теле, неодновременно для физика на земле.

Казалось бы, такое простое и ясное понятие, как одновременность двух событий, оказывается вовсе не столь очевидным. Нет абсолютной одновременности. Это понятие относительно и зависит от движения тела — «лаборатории», по отношению к которой рассматриваются события, как говорят физики — зависит от системы отсчета.

Если события одновременные в некоторой системе отсчета происходят недалеко друг от друга в пространстве, то даже сравнительно быстрые движения делают их неодновременными лишь на ничтожный промежуток времени. Поэтому в обыденной жизни нам кажется, что одновременность абсолютна, очевидна, ни от каких, движений не зависит. И утверждение, например, что ^одновременно с моментом, когда часы на площади показывали двенадцать часов, от перрона отошел поезд, звучит в практическом смысле одинаково и абсолютно понятно и для наблюдателя — человека, стоящего невдалеке на платформе вокзала, и для едущего на автомашине на привокзальной площади. Иное дело для событий, далеко разнесенных в пространстве и по отношению к быстро движущимся друг относительно друга наблюдателям. Так, уже приводившееся нами ранее утверждение, сделанное человеком на Земле: «Сегодня в полдень в Галактике в созвездии Треугольник взорвалась сверхновая звезда», — может оказаться совершенно неверным для космонавта на быстро летящей фотонной ракете.

Теория относительности установила, что понятия «сейчас», «раньше» и «позже» имеют простой смысл только для событий, происходящих недалеко друг от друга. Для событии, происходящих на больших расстояниях, понятие «раньше» и «позже» однозначны лишь в случае, когда сигнал, идущий со скоростью света, успел дойти от одного события до места, где произошло второе событие. Если же сигнал не успел дойти, то соотношение «раньше» — «позже» неоднозначно и зависит от состояния движения наблюдателя. То, что «раньше» для одного наблюдателя, может быть «позже» для другого, движущегося относительно первого. Такие события не могут быть причинно связанными, не могут влиять друг на друга. В противном случае событие, которое было причиной для другого события (а значит, произошло раньше его), с точки зрения некоторого наблюдателя оказалось бы произошедшим позже своего следствия.

Подобные свойства времени теснейшим образом связаны с тем, что скорость света в пустоте всегда постоянна, не зависит от движения наблюдателя, и эта скорость предельно большая. Ничто в природе не может двигаться быстрее.

Ну и, наконец, упомянем еще об одном выводе теории относительности.

Быстро движущиеся тела сокращаются в направлении своего движения, оставаясь неизменными в поперечнике. Это сокращение совершенно незаметно при медленных движениях и велико при скоростях, приближающихся к световым.

Вот так кардинально меняет наши представления о пространстве и времени теория относительности.

Здесь, наверное, невольно возникает вопрос: «А что будет чувствовать космонавт на очень быстро летящей ракете? Как он отнесется к тем изменениям в течение времени и длине тел, которые фиксирует внешний наблюдатель?»

Ответ очевиден: космонавт ничего не заметит! В самом деле, ведь с точки зрения внешнего наблюдателя одинаково замедлились и биение пульса космонавта, и тикание его часов, и все другие процессы. Значит, процессы биения пульса и тикания часов относительно друг друга текут в прежнем темпе. Скажем, за секунду по часам его сердце по-прежнему делает один удар. В потоке его времени (называемого «собственным» временем) все по-прежнему течет, как и при покоящейся ракете. Только этот поток собственного времени изменил свой темп по отношению к внешнему наблюдателю. Оказалось, что «река времени» не везде течет с неизменной скоростью.

Не заметит космонавт и сокращение продольного размера своей летящей ракеты. Действительно, любой метр, которым он захочет измерить длину, также сократится, и этих сокращенных метров уложится вдоль сокращенной ракеты столько же, сколько было до разгона ракеты.

Итак, космонавт ничего не обнаружил! Он никак не будет чувствовать своей скорости. Такой вывод, конечно, полностью согласуется с первым постулатом теории относительности о том, что внутри быстролетящей ракеты с постоянной скоростью все протекает так же, как в покоящейся.

Так как равномерное движение относительно и никакого абсолютного движения нет, то космонавт с полным правом может считать себя покоящимся, а наблюдателя на Земле летящим в противоположную сторону. И космонавт будет считать, что на Земле время течет медленнее, чем на его ракете. «Но как же так? — восклицает читатель, впервые знакомящийся с относительностью времени или основательно подзабывший, что по этому поводу говорилось в школе. — Земной наблюдатель говорит, что время течет медленнее у космонавта, а космонавт считает — наоборот. А что же на самом деле? Допустим, что время может замедляться, ладно, хотя это и трудно представить. Так, где все же оно замедлилось — у космонавта или у земного наблюдателя? Или, как говорится в знаменитой книжке А. Мили «Винни Пух и все-все-все»: «Хвост или есть, или его нет. По-моему, тут нельзя ошибиться». Должен же быть однозначный ответ на этот вопрос!»

Нет, не должен, как это ни странно звучит. Впрочем, понять это не так сложно. Для сравнения вспомним рассуждения Г. Галилея о падении тел в каюте движущегося корабля. Для человека в каюте тело, выпущенное из рук, падает по прямой к его ногам. Для внешнего наблюдателя падающее тело перемещается вместе с кораблем, и его траектория — парабола. Можно спросить: «А на самом деле тело движется по прямой или по параболе?» Очевидно, вопрос о том, какова форма траектории «на самом деле», бессмыслен. Траектория тела зависит от того, по отношению к чему она определяется. Для человека в каюте она «на самом деле» прямая, для внешнего наблюдателя она «на самом деле» парабола. И никакого противоречия здесь нет.

Точно так же и в случае замедления времени. Для человека на земле время у космонавта «на самом деле» течет медленнее. Для космонавта, наоборот, «на самом деле» медленнее проходят все события на Земле. И никакого противоречия здесь точно так же нет. Это и есть теория относительности.

Конечно, «переварить» все это нелегко. Но теория Эйнштейна является неизбежным следствием опытных фактов. В таких случаях полезно вспомнить высказывание Шерлока Холмса: «Когда вы отбросите все невозможное, то, что останется, пусть самое невероятное, и будет правдой» (Конан Дойл «Знак Четырех»).

Те из читателей, кто испытывает трудность в усвоении до полной ясности сказанного, пусть не огорчаются. После открытия А. Эйнштейна многие даже очень крупные ученые далеко не сразу усвоили его теорию, А ученые «средние» и тем более люди далекие от физики и подавно с огромным трудом воспринимали идеи, буквально перевернувшие привычные представления. Многие пытались найти в теории ошибки и противоречия.

Такие попытки продолжались десятилетия. Так, четверть века спустя после создания теории в 1931 году в Лейпциге вышла книга «Сто авторов против Эйнштейна». В этой книге сто экспертов полностью отрицали теорию относительности и ее выводы. Говорят, что, узнав про книгу, А. Эйнштейн, улыбаясь и как всегда флегматично в таких случаях, проронил: «Если бы я был не прав, хватило бы и одного возражающего специалиста».

Конечно, никаких противоречий в выводах А. Эйнштейна нет. Для серьезных ученых все сомнения и возражения против теории относительности давно стали достоянием истории. Сама теория лежит в основании всей современной физики. Ее используют при создании гигантских ускорителей элементарных частиц, на ее основе создаются атомные электростанции, она испытана и такими страшными опытами, как взрывы ядерного оружия.

Надо сказать, что современные школьники и студенты обычно без особого труда усваивают теорию Эйнштейна, делая это гораздо легче, чем специалисты начала века или даже люди моего поколения, родившиеся ближе к середине нашего столетия. Причина здесь ясна — к началу нового, XXI века изменился сам стиль научного мышления.

Я уже говорил, что в эпохи, когда в науке зреют новые важные идеи, обычно разные ученые с разных точек зрения близко подходят к формулировке открываемых — закономерностей, выясняют их отдельные свойства. Но обычно кто-то один гениальный дает окончательную формулировку нового. Так было и с созданием теории относительности. Отдельные формулы ее математического аппарата писались в конце 80-х годов прошлого столетия. Близко к формулировке теории подошли нидерландский физик X. Лоренц и французский ученый А. Пуанкаре. Но только А. Эйнштейн сделал самый трудный и решительный шаг, изменив представления о пространстве и времени. X. Лоренц, вспоминая в 1912 году о своих попытках еще до 1905 года (года опубликования работы Эйнштейна) разрешить противоречия, следующие из данных экспериментов, писал: «Можно заметить, что в этой статье (опубликованной в 1904 г. — И. Н.) мне не удалось в полной мере получить формулы преобразования теории относительности Эйнштейна… С этим обстоятельством связана беспомощность некоторых дальнейших рассуждений в этой работе.

Заслуга Эйнштейна состоит в том, что он первый высказал принцип относительности в виде всеобщего, строго и точно действующего закона».

Приведем еще высказывание известного американского физика-экспериментатора Р. Милликена, весьма ясно показывающее, почему открытие было сделано А. Эйнштейном: «Именно здесь проявилась характерная для Эйнштейна смелость подхода, ибо отличительной чертой современного научного мышления является тот факт, что оно начинает с отбрасывания всех априорных представлений о природе реальности (или о законченной картине строения Вселенной), характерных практически для всей греческой философии, а также для всего средневекового мышления; вместо этого современное научное мышление берет в качестве отправного пункта прочно установленные, тщательно проверенные экспериментальные факты».