Инерциальная система отсчета. Принцип относительности Галилея

We use cookies. Read the Privacy and Cookie Policy

Инерциальная система отсчета. Принцип относительности Галилея

Если в рамках точности измерений времени той эпохи можно было согласиться, что часы с одними и теми же (лучшими) техническими характеристиками идут одинаково у всех возможных наблюдателей, а время, измеренное ими, можно считать абсолютным, то с измерениями абсолютных положений ситуация требовала осмысления. Если принципиально возможно определить координаты (положение) какой-либо точки относительно системы, связанной с центром тяжести Солнечной системы, то осуществить это практически на обращающейся вокруг Солнца Земле сложно.

Чтобы разобраться с ситуацией, необходимо ввести несколько определений. Под системой отсчета обычно понимают строго заданный способ измерения положения и времени. Такие измерения можно осуществлять с помощью системы декартовых координат (трех взаимно перпендикулярных осей) – для измерения положения и расстояний и с помощью часов – для отсчета времени. Инерциальной системой называется система отсчета, в которой тела при отсутствии внешних воздействий движутся равномерно и прямолинейно, то есть система, в которой работает первый закон Ньютона. Тогда, как минимум, абсолютное пространство вместе с абсолютным временем может мыслиться как инерциальная система отсчета.

Возникает вопрос: есть ли еще инерциальные системы и как они относятся к абсолютному пространству? Обратимся к так называемым преобразованиям Галилея (термин был введен в 1909 году). Они определяют связь между координатами для двух систем отсчета, движущихся относительно друг друга. Если скорость V направлена вдоль оси x, то координаты x в двух системах для постоянной скорости связаны соотношением: x? = x + Vt. Время t, определенное в механике Ньютона как абсолютное, является одинаковым для всех систем отсчета. Для преобразований Галилея скорость движения частицы v? в одной системе определяется как простая сумма скорости этой частицы в другой системе и скорости относительного движения систем V, если скорость частицы и относительная скорость систем имеют одно направление: v? = v + V. Например, если в поезде выстрелят в направлении его движения, то для наблюдателя на перроне скорость пули будет определяться как сумма скорости поезда и скорости пули относительно оружия. Если скорости не параллельны, то используется векторная сумма. Таким образом, преобразования Галилея ясно показывают, что любая система отсчета, движущаяся равномерно и прямолинейно относительно какой-либо инерциальной системы (скажем, абсолютного пространства), также является инерциальной. Это и есть ответ на вопрос.

Возвратимся к измерениям на Земле. Обычно они производятся в ограниченном пространстве (малом, по сравнению с размерами Земли) и ограничены во времени – малые длительности по сравнению с периодом обращения вокруг Солнца (годом). Такая «лаборатория» с большой степенью точности движется равномерно и прямолинейно относительно абсолютного (по Ньютону) пространства. Если с ней связаны пространственные и временные координатные системы, то она будет инерциальной системой отсчета.

Теперь уместно привести утверждение (постулат), который часто именуется принципом относительности Галилея. По Галилею он звучит так: если в двух замкнутых лабораториях, одна из которых движется равномерно и прямолинейно относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым. То есть в двух инерциальных системах законы механики одинаковы. Рассмотрим законы Ньютона в рамках этого принципа. Что касается первого закона, то он справедлив для любой инерциальной системы отсчета просто в силу определения этих систем. Далее, если относительная скорость систем постоянна, то из преобразований Галилея следует также, что ускорение какого-либо тела относительно обеих систем отсчета будет одинаковым (одним и тем же). Тогда, в силу выполнения второго закона Ньютона в любой инерциальной системе отсчета (здесь мы используем принцип), действующие на частицу силы в обеих системах одинаковы. А раз силы одинаковы, то работает и третий закон. Хотя он должен действовать во всех инерциальных системах отсчета и непосредственно, в силу самого принципа.

Итак, в механике Ньютона все инерциальные системы отсчета эквивалентны между собой и одинаково относятся к абсолютному пространству. В рамках каждой из них работают одни те же законы Ньютона, а динамические характеристики – сила и ускорение – одинаковы. А какие физические свойства приписывались самому абсолютному пространству? Ньютон считал, что абсолютное пространство «безразлично» к равномерному прямолинейному движению, но оказывает сопротивление ускорению тел. То есть инерционные свойства тел возникают вследствие воздействия на них абсолютного пространства, на которое, в свою очередь, материальные тела воздействовать не могут. Стоит заметить, что последнее утверждение находится в противоречии с самой философией механики Ньютона. Действительно, это означает, что при взаимодействии с абсолютным пространством не работает третий закон Ньютона, и следовательно, разрушается единая система законов.

Концепция абсолютного пространства и интерпретация свойств инерции вызывали возражения, как современников Ньютона, так и следующих за ними исследователей. Для нас наиболее интересна гипотеза австрийского физика и философа Эрнста Маха (1838–1916). В 1872 году им была высказана идея, что свойство инерции возникает как результат взаимодействия каждого отдельного тела сразу со всеми остальными массами во Вселенной и не имеет ничего общего с абсолютным пространством Ньютона. Идеи Маха в большой степени стимулировали Эйнштейна в исследовании проблем теории тяготения. Именно Эйнштейн назвал эту гипотезу принципом Маха, хотя в реальности она не вошла в структуру общей теории относительности, созданной им позднее. Идея Маха до сих пор не получила ни основательного подтверждения, ни опровержения. Надо сказать, и в наше время она пересматривается после каждого значимого открытия в космологии или в рамках модифицированных теорий гравитации.

Данный текст является ознакомительным фрагментом.