Принципы построения ОТО
Принципы построения ОТО
Не природа …сообразуется с принципами, а наоборот, принципы верны лишь постольку, поскольку они соответствуют природе…
Фридрих Энгельс «Диалектика природы»
Пришло время начать рассказ собственно об общей теории относительности, о принципах ее построения. Сначала вспомним факт равенства инертной и тяготеющей масс, установленный еще Галилеем, затем подтвержденный Ньютоном и другими учеными, который мы уже подробно обсудили в главе 2. Сейчас это равенство проверено с относительной точностью 10–12–10–13. Этот опытный факт Эйнштейн положил в основу общей теории относительности в качестве одного из ключевых принципов. Обычно его называют слабым принципом эквивалентности. Что из него следует?
Если гравитационная масса точно равна инертной, то они могут быть заменены одна на другую как во втором законе Ньютона, так и в законе всемирного тяготения. Из этого следует, что ускорение тела, на которое действуют лишь гравитационные силы, не зависит от массы (или каких-то других свойств этого тела)! А значит и траектория тела не зависит от его массы. Но тогда, если все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение нужно связать не со свойствами тел, а со свойствами самого пространства в этой точке. Поскольку в общем случае траектории тел, движущихся в гравитационном поле других тел, искривлены, то логично предположить, что пространство, в котором есть гравитационное взаимодействие, также искривлено. Далее, СТО убедительно показала, что пространство и время являются единой физической реальностью. Поэтому описание гравитационного взаимодействия между телами нужно сводить к описанию искривленного пространства-времени (рис. 6.1).
Но каково свободное движение тела, если пространство-время искривлено? Здесь разумно снова вернуться к СТО и первому закону Ньютона. В инерциальной системе отсчета такие тела движутся прямолинейно и равномерно. В искривленном пространстве аналогом прямых линий являются геодезические.
Рис. 6.1. Движение искривленном пространстве
Их теория подробно разработана математиками XIX века. Основной вклад внес немецкий математик Бернхард Риман (1826–1866). В искривленном пространстве нет параллельных линий в понимании Евклида, сумма углов треугольника не равна 180°. Для примера рассмотрим поверхность Земли – это сфера, которая является 2-мерным пространством положительной кривизны. Что такое геодезическая на поверхности Земли? Это не прямая линия на карте, а дуга большого круга, который проходит через центр Земли (рис. 6.2). Именно с помощью такой дуги определяется кратчайшее расстояние между двумя точками на Земле. Сумма углов треугольника на поверхности Земли оказывается больше 180°.
Рис. 6.2. Линии кратчайшего расстояния на сфере
Снова вспомним, что в релятивистской теории пространство и время не рассматриваются (не существуют) раздельно. Поэтому разумно рассматривать не траектории тел, а их мировые линии на пространственно-временной диаграмме. Инерциальному движению в плоском пространстве-времени соответствуют мировые линии, которые тоже прямые. А каковы мировые линии в искривленном пространстве-времени? Опираясь на слабый принцип эквивалентности, Эйнштейн предложил принцип движения по геодезическим. Он звучит в одном из определений так: если нет других воздействий, кроме гравитационного, то тело движется свободно, по инерции, его мировая линия в пространстве-времени является геодезической. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жестко связанными с телом. Вспомним, что при обсуждении «парадокса близнецов» мы уже установили, что максимальное собственное время, требуемое для перемещения в плоском пространстве из одной мировой точки в другую, соответствует движению по прямой. Современные эксперименты подтверждают движение тел по геодезическим линиям с такой же точностью, как и равенство гравитационной и инертной масс. Отметим, что часто слабый принцип эквивалентности и принцип движения по геодезическим не разделяют.
Обсудим слабый принцип эквивалентности. Свободное движение какого-либо тела по инерции в поле тяготения является обобщением свободного движения в инерциальной системе отсчета в пространстве Минковского. Для такого движения взаимные ускорения всех свободных тел в ближайшей окрестности равны нулю. То есть собственная система отсчета исходного тела локально является инерциальной.
Приведем пример, несколько избитый, но наглядный. Представим закрытую со всех сторон кабину лифта. Если удерживающий ее трос вдруг оборвется, то кабина вместе со всем содержимым начнет свободно падать под действием силы тяжести, все тела в ней будут ускоряться совершенно одинаково. Наблюдатель, находящийся внутри такой кабины, не почувствует веса своего тела, а окружающие его предметы будут свободно «парить» в воздухе или двигаться прямолинейно и равномерно, не испытывая ускорений. Для стороннего взгляда все тела внутри кабины ускоряются точно так же, как и она сама (именно этот факт доказал Галилей). И поэтому всё в лифте для внутреннего наблюдателя окажется невесомым. Какие бы опыты он не проводил внутри кабины, он не сможет с их помощью установить, падает ли лифт на Землю или свободно парит в космическом пространстве.
Итак, внутри лифта (в небольшом объеме) наблюдатель ощущает себя вполне в пространстве Минковского и локально может использовать координаты Лоренца. Его мировая линия в этих координатах – это вертикальная линия вдоль оси ct. Следовательно, ускорение для наблюдателя в лифте отсутствует, а значит, отсутствует и «гравитационная сила». Но во внешней для лифта системе отсчета эта же мировая линия (геодезическая) будет выглядеть как кривая.
Пусть пространство искривлено, как это определить? Если запустить из двух близких точек два тела параллельно друг другу, то, двигаясь по геодезическим, они начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических. Как это осознать? Если два путешественника начнут перемещаться по двум близким меридианам, начиная от экватора, то они будут сближаться и встретятся на полюсе. Это как раз говорит о том, что поверхность Земли, имея форму сферы, искривлена. Если бы радиус Земли увеличился, то кривизна уменьшилась бы, ведь поверхность Земли стала бы площе. Аналогично, в пространстве-времени девиация геодезических определяет его кривизну.
Математически кривизна определяется так называемым тензором кривизны Римана, величиной, которую нельзя обратить в нуль никакими преобразованиями координат, если пространство-время искривлено. Это понятие исключительно геометрическое. Пространство-время становится искривленным всегда, когда содержит материю в том или ином состоянии, так или иначе расположенную и движущуюся тем или иным образом. Однако оно может быть искривлено и в отсутствии материи! Для плоского пространства-времени тензор кривизны равен нулю.
Необходимо обсудить еще один принцип, который чаще называют сильным принципом эквивалентности. Существуют разные его формулировки, приведем нечто усредненное.
Малая по размерам локальная система отсчета, находящаяся в гравитационном поле, неотличима от такой же системы, но ускоренной относительно инерциальной системы отсчета, связанной с пространством Минковского.
Обычно этот принцип иллюстрируют следующим образом. Находясь в кабине, стоящей на поверхности Земли, наблюдатель ощущает свой обычный вес и замечает, что все предметы совершенно одинаково ускоряются по направлению к полу. Если же кабина, снабженная реактивным двигателем, вместе с наблюдателем переместится в космическое пространство, где будет двигаться с ускорением, в точности равным гравитационному ускорению у поверхности Земли, то наблюдатель снова обнаружит, что все свободные предметы падают на пол с тем же самым ускорением и опять почувствует свой нормальный вес. В такой закрытой кабине невозможны никакие эксперименты, которые позволили бы наблюдателю отличить явления, связанные с тяготением, от явлений, характерных для ускоренного движения.
Часто считают, что этот принцип тоже лежит в основе общей теории относительности. Однако это не так однозначно. Даже сейчас, почти через 100 лет после создания ОТО, в профессиональной литературе время от времени выходят статьи с обсуждением роли этого принципа. Даже его название является предметом дискуссии.
Приведем один из аргументов, который вносит некое сомнение в само представление об эквивалентности в этом случае. Основным отличием пространства-времени ОТО от пространства-времени СТО является его кривизна, которая (как было сказано) определяется тензором кривизны. В пространстве-времени СТО этот тензор тождественно равен нулю, поэтому пространство Минковского называют плоским. Если применить сильный принцип эквивалентности (а понятию «эквивалентность» придать абсолютный смысл) для описания движения в ускоренной системе в пространстве Минковского, то нужно будет сказать, что от плоского пространства-времени мы перешли к искривленному пространству-времени ОТО. Но это невозможно, поскольку невозможно воссоздать из нулевой кривизны ненулевую лишь переходом между системами отсчета. «Малые размеры системы отсчета» в определении принципа не могут быть оправданием, поскольку кривизна – понятие локальное, она определяется в каждой точке.
Хотя в окончательную форму теории Эйнштейна сильный принцип эквивалентности не вошел, исторически он сыграл большую роль в становлении ОТО. Эйнштейн при разработке теории активно его использовал. Также, если в принципиальном плане нельзя из плоского мира сделать искривленный просто переходом в другую систему отсчета, то многие эффекты теории Эйнштейна действительно имеют место в ускоренных системах отсчета.
В качестве принципов построения теории, конечно, необходимы принципы соответствия. В чем они должны состоять? В случае слабых гравитационных полей (малой кривизны пространства-времени) и малых (по сравнению со световой) скоростей уравнения релятивистской теории гравитации должны перейти в уравнения гравитации Ньютона (их полевую форму мы обсудим несколько ниже). То есть предсказания общей теории относительности должны совпасть с результатами применения закона всемирного тяготения Ньютона с небольшими поправками, которые становятся значительными по мере увеличения напряженности поля и увеличения скоростей. В случае отсутствия гравитации (нулевая кривизна) уравнения новой теории тяготения должны перейти в уравнения СТО.
Наконец, иногда в качестве принципов, на основе которых была построена ОТО, упоминают ковариантность – требование, чтобы уравнения теории имели один и тот же вид во всех координатных системах. Это требование в определенном смысле является обобщением лоренц-инвариантности в СТО.
Данный текст является ознакомительным фрагментом.