Проблема происхождения массы, известная как проблема полей Хиггса

We use cookies. Read the Privacy and Cookie Policy

Проблема происхождения массы, известная как проблема полей Хиггса

В 1964 году шотландский физик Питер ХИГГС и другие, исходя из чисто математических соображений, допустили существование вездесущего поля, позже названного полем Хиггса. Все взаимодействующие с полем Хиггса частицы приобретают вследствие этого массу. Иначе говоря, всякая масса порождена взаимодействием.

Механизм обретения массы схож с прохождением строя солдат через разлитую на земле патоку. Они становятся тяжелее вследствие прилипания патоки при ходьбе. Другим примером может служить вечеринка, где гости разбрелись по комнате. При появлении важного лица ближайшие соседи обступают его, увеличивая тем самым его эффективную [т. е. большую, чем реальная] массу. Чем значительнее лицо, тем больше народу обступает его, а значит, растет и его масса.

Согласно данной теории частицы по-разному сцепляются с полем Хиггса, что приводит к большим массам у W- и Z-бозонов и к отсутствию массы у фотона и глюона. Если механизм Хиггса действительно ответственен за массу у элементарных частиц, он хотя бы отчасти дает ответ на вопрос, откуда появляется масса.

Но как определить, действительно ли существует поле Хиггса или это просто математический прием? Надо поступить следующим образом. Достаточно крепкий удар вроде удара частиц с очень высокой энергией по космической патоке, именуемой полем Хиггса, вызовет дрожание этой патоки. Колебания же самого поля можно зарегистрировать, поскольку должна появиться частица Хиггса, переносчик хиггсова поля, подобно тому как фотон служит переносчиком электромагнитного поля.

В самой простой теории лишь одна частица Хиггса является носителем хиггсова взаимодействия. Более сложные теории содержат многочисленные частицы Хиггса, в числе которых самая легкая. И, возможно, эта частица доступна современным ускорителям.

В течение нескольких лет Европейская организация по ядерным исследованиям в Женеве — ЦЕРН (Швейцария) занималась поисками хиггсовой частицы на ускорителе со встречными электрон-позитронными пучками (LEP). При 115 ГэВ (см. табл. 2 для масс частиц) было зарегистрировано интересующее явление [т. е. хиггсова частица], но для подтверждения необходимы также дополнительные данные, чтобы исключить влияние фона. В 2001 году ЦЕРН закрыл ускоритель для создания более мощного устройства с тем же тоннелем [27- километровым накопительным кольцом]. Новый ускоритель — Большой ускоритель со встречными протон — протонными пучками (LHC) по плану вступит в строй в 2005 году и благодаря своей мощи (8000 ГэВ в пучке) станет более эффективным средством исследования. С марта 2001 года Национальная лаборатория высокоэнергетических исследований имени Энрико Ферми (FNAL) в Батавии (штат Иллинойс) ведет поиски частицы Хиггса на своем ускорителе Tevatron (1000 ГэВ в пучке), но события, связанные с существованием такой частицы, были столь нечасты, что, похож е, уйдет много времени для сбора статистически значимых данных. [Сеанс набора данных продлится пять лет.] Сверхпроводящий сверхускоритель на встречных пучках (SSC), проект которого одобрен президентом Бушем в 1987 году, своей главной целью ставил поиск частицы Хиггса, и обладал бы достаточной мощью (20 000 ГэВ в пучке) для решения подобной задачи, но его строительство было прекращено по решению сената США в 1993 году [несмотря на уже израсходованные 2 млн. долларов].

В случае если найдется частица Хиггса и ее масса окажется в пределах досягаемости нынешних ускорителей, можно расширить стандартную модель, чтобы она включила вытекающие из этого следствия. Данный шаг, конечно же, не решит вопроса о происхождении массы или всех трудностей стандартной модели, но послужит все же неким началом.

Если частица Хиггса отыщется и ее масса выйдет за предсказанные пределы, стандартная модель рухнет, поскольку ее прогнозы прежде были безупречными. В таком случае потребуется существенный пересмотр или даже замена стандартной модели.

Если будет найдено множество частиц Хиггса, помимо стандартной модели потребуются новые теории.

Если не отыщется ни одной частицы Хиггса, это тоже повлечет за собой необходимость замены стандартной модели. Подобные теории обсуждаются в следующем разделе.

Итак, обнаружение частицы Хиггса или хотя бы установление нижней границы ее массы оказывается ключевым для понимания причины разнобоя в определении массы частиц. Однако некоторые ученые полагают, что поля Хиггca — лишь временная мера, не решающая вопроса о происхождении массы. Частица Хиггса для них — своего рода долгий ящик неведения, куда откладываются основополагающие трудности стандартной модели.

Стандартная модель недоучитывает тяготения — и это другая сторона нерешенного вопроса с массой. Прямым ответом здесь послужило бы создание квантовой теории тяготения (гравитации). Лучшей теорией тяготения считается общая теория относительности Эйнштейна, и почему бы в таком случае просто не приложить квантовые законы к общей теории относительности? Потому что сделать это нелегко. Обобщенная теория относительности является классической в отношении связи геометрии Вселенной как гладкого на больших масштабах четырехмерного многообразия с массой. Она хорошо работает при больших расстояниях, но на расстояниях между частицами меньше 1 мм никаких опытов не проводилось. Это означает, что сила тяготения попросту экстраполируется в микромир. Вместе с тем стандартная модель проводит квантование полей в виде дискретных частиц и имеет дело с крайне малыми масштабами. Поэтому, когда ученые пытаются провести квантование для общей теории относительности, теория дает бесконечные значения для явно конечных величин.

Другая трудность вызвана крайней слабостью тяготения по сравнению с другими силами. Чтобы быть на равных с сильным и электрослабым взаимодействием, тяготение должно иметь сравнимую силу. Это так называемая проблема иерархии взаимодействий. Огромный энергетический разрыв существует между энергиями, для которых применима стандартная модель, и энергией, при которой наиболее слабо выраженное тяготение становится сравнимым по величине с сильным и электрослабым взаимодействиями. Неизвестно, чем вызван такой огромный разрыв.