ЗАДАЧА О ВРАЩЕНИИ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ
ЗАДАЧА О ВРАЩЕНИИ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ
Проблема вращения твердого тела — характерный пример тех механико-математических проблем, которые стояли в центре теоретической механики во второй половине XIX в. Начиная с С.В. Ковалевской (1850—1891), русские ученые вносят крупный вклад в решение этой проблемы. Факты богатой событиями биографии Ковалевской и оценку ее математических работ можно почерпнуть из весьма обширной литературы. Мы остановимся лишь на главных вехах ее жизни.
С 1868 г. С.В. Ковалевская, жившая до того в Москве, вступила в брак с В.О. Ковалевским (впоследствии знаменитым палеонтологом) и уехала с ним в Петербург, где обратилась к П.Л. Чебышеву с просьбой разрешить ей слушать его лекции в университете. Но в силу законов того времени она, будучи женщиной, не могла быть допущена на эти лекции. В 1869 г. Ковалевские уехали за границу. Здесь Ковалевская систематически изучала математику и физику, посещая в Гейдельбергском университете лекции крупнейших ученых того времени. Через два года она переехала в Берлин, где преподавал Карл Вейерштрасс (1815—1897).
СОФЬЯ ВАСИЛЬЕВНА КОВАЛЕВСКАЯ (1850-1891)
Русский математик и механик, первая в мире женщина-профессор, член-корреспондент Петербургской академии наук. Ей принадлежат фундаментальные работы по теории дифференциальных уравнений и по механике. С.В. Ковалевская внесла крупный вклад в решение задачи твердого тела
В Берлинский университет женщин тогда тоже не допускали, и Вейерштрасс начал заниматься с Ковалевской частным образом.
Вейерштрасс был очень высокого мнения о математическом даровании своей ученицы. «Что же вообще касается уровня математического образования г-жи Ковалевской, — писал он геттингенскому математику Л. Фуксу в письме от 27 июня 1874 г., — то я могу с уверенностью сказать, что у меня было очень мало учеников, которые могли бы сравниться с ней в том, что касается ее способностей, суждений, прилежания и любви к науке»{214}.
Ковалевская становится любимой ученицей Вейерштрасса. Он не только повторяет ей одной лекции, читаемые им в университете, но знакомит ее также со своими неопубликованными работами и обсуждает животрепещущие научные проблемы.
В 1874 г. Геттингенский университет заочно присуждает С.В. Ковалевской ученую степень доктора философии. В качестве докторской диссертации Ковалевская представила три работы, из которых особенно замечательна работа «К теории уравнений в частных производных». Здесь была доказана классическая теорема существования голоморфного решения системы дифференциальных уравнений в частных производных нормального вида. В современных курсах математического анализа эта теорема называется ее именем.
В 1874 г. С.В. Ковалевская возвратилась в Россию. Начался самый тяжелый период ее жизни. Ковалевская, уже признанный за границей математик, хотела приложить свои знания на родине, но в царской России женщина не могла получить кафедру в университете.
В конце 1879 г. П.Л. Чебышев предложил Ковалевской сделать сообщение о ее математических работах на VI съезде русских естествоиспытателей в Петербурге. В том же году Ковалевские переехали в Москву. Софья Васильевна решила сдать в Московском университете магистерские экзамены, но не была к ним допущена.
В 1881 г. Ковалевская снова у Вейерштрасса, полная творческого энтузиазма и страстного желания подготовить как можно больше математических работ. В течение двух лет она занимается проблемой света в кристаллах.
В августе 1883 г. Ковалевская делает доклад на VII съезде русских естествоиспытателей о преломлении света в кристаллах. На этом съезде она познакомилась с Н.Е. Жуковским.
В ноябре 1883 г. профессор Стокгольмского университета выдающийся математик Г. Миттаг-Леффлер (1846—1927) предложил Софье Васильевне место доцента. Она согласилась и переехала в Стокгольм. В 1884 г. Ковалевская стала профессором в том же университете. За восемь лет своей работы в Стокгольме Софья Васильевна прочитала двенадцать курсов по различным разделам математики и механики. В Швеции она пользовалась большой популярностью не только как выдающийся математик, но и как незаурядная писательница.
В 1888 г. С.В. Ковалевская написала свою знаменитую работу «Задача о вращении твердого тела около неподвижной точки». Выше уже говорилось об истории этой задачи. Еще в 1758 г. Эйлер рассмотрел случай движения твердого тела вокруг неподвижной точки (полюса), когда центр тяжести совпадает с полюсом, а все силы сводятся к равнодействующей, проходящей через эту неподвижную точку. Л. Пуансо (1777—1859) в 1834 г. дал геометрическую интерпретацию этого случая. В 1788 г. Лагранж (и независимо от него в 1815 г. Пуассон) рассмотрел случай, когда тело имеет ось симметрии, проходящую через неподвижную точку, и движется под действием только силы тяжести, точка приложения которой лежит на оси симметрии и не совпадает с полюсом. Обе задачи сводятся в общем случае к квадратурам, и решения выражаются через эллиптические функции. Все вычисления были выполнены до конца И.И. Сомовым в 1851 г.
После исследований Эйлера, Лагранжа и Пуассона проблема движения тела вокруг неподвижной точки длительное время не получала дальнейшего развития. Ввиду важности этой проблемы французская Академия наук назначила премии за какое-либо существенное продвижение в исследовании задачи. Два проведенных конкурса не дали результатов. В 1888 г. конкурс был объявлен в третий раз. Из пятнадцати представленных работ получила премию работа С.В. Ковалевской, имевшая девиз: «Говори, что знаешь; делай, что обязан; будь, чему быть». Конкурсная комиссия, в состав которой входили крупнейшие ученые, увеличила премию с 3000 до 5000 франков, так как, по заключению комиссии, работа Ковалевской является «замечательным трудом, который содержит открытие нового случая …автор не удовольствовался прибавлением результата к тем решениям, какие перешли к нам по этому предмету от Эйлера и Лагранжа, а сделал из своего открытия углубленное исследование с применением всех возможностей современной теории функций»{215}.
В начале своей работы Ковалевская ставит вопрос: не существует ли кроме случаев, рассмотренных Эйлером и Лагранжем, еще других случаев движения твердого тела вокруг неподвижной оси, которые могли бы быть выражены при помощи каких-либо функций времени, аналогичных функциям, примененным для исследования первых двух задач? В результате своих изысканий она находит, что применение подобных функций позволит разрешить только один новый случай движения твердого тела. В этом случае центр тяжести тела лежит в плоскости экватора эллипсоида инерции, построенного для неподвижной точки.
В работе Ковалевской о вращении тяжелого твердого тела вокруг неподвижной точки необходимо отметить следующие существенно новые для механики и математики особенности. Ею открыт новый случай вращения твердого тела вокруг неподвижной оси, для которого она нашла общий интеграл. Этот случай справедливо получил ее имя. В своем труде С.В. Ковалевская впервые привлекла к исследованию подобных задач прекрасно разработанный аппарат теории функций комплексного переменного. Наконец, ее работа поставила некоторые новые общие математические проблемы. Н.Е. Жуковский построил наглядные модели волчков для всех трех решенных в конечном виде случаев вращения твердого тела: первый из приведенных рисунков характеризует случай Эйлера — Пуансо, второй — случай Лагранжа — Пуассона, и третий — случай Ковалевской (см. рисунок).
Работы С.В. Ковалевской, посвященные движению твердого тела, стали исходным пунктом многочисленных исследований. Мы можем назвать русских ученых, так или иначе дополнивших анализ Ковалевской: московских профессоров Г.Г. Аппельрота (1866—1943), П.А. Некрасова, Б.К. Млодзеевского (1859—1923), Н.Е. Жуковского, а также А.М. Ляпунова и Н.Б. Делоне.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
2. Законы Ньютона и динамика материальной точки
2. Законы Ньютона и динамика материальной точки Приняв за основу возможность локализации физических объектов в пространстве и во времени, классическая механика начинает изучение законов движения с наиболее простого случая: с изучения законов движения материальной
Все ли точки зрения равноценны?
Все ли точки зрения равноценны? Если бы наш интерес при наблюдении за движением тела в пространстве ограничивался изучением формы траектории (так называется кривая, по которой движется тело), то вопрос о выборе места наблюдения решался бы соображениями об удобстве и
Очередная задача техники
Очередная задача техники Суждено ли нам когда-нибудь совершать путешествия на другие планеты, или же мы обречены навеки оставаться пленниками земного шара? Мысль о странствовании в межзвездных пустынях, о перелетах с планеты на планету — в настоящее время, конечно, не
Задача преобразования длинноволновых излучений в видимый свет
Задача преобразования длинноволновых излучений в видимый свет В естественных преобразователях света — люминесцентных веществах — преобразуется свет с длиной волны более короткой, чем у видимого, в свет видимый. Однако практические потребности выдвигают задачу
ЭКСПЕРИМЕНТЫ С НЕПОДВИЖНОЙ МИШЕНЬЮ ИЛИ КОЛЛАЙДЕРЫ?
ЭКСПЕРИМЕНТЫ С НЕПОДВИЖНОЙ МИШЕНЬЮ ИЛИ КОЛЛАЙДЕРЫ? Эксперименты, аналогичные тем, благодаря которым были открыты кварки, где пучок ускоренных электронов направляется на закрепленный образец вещества, называются экспериментами с неподвижной мишенью. В них один пучок
3. И наконец, вокруг…
3. И наконец, вокруг… «Внимание, говорит Москва! Работают все радиостанции Советского Союза! Сегодня, 3 ноября 1957 года, в Советском Союзе успешно осуществлен запуск второго искусственного спутника…»Безостановочным потоком идет на приемные пункты информация. Сообщения,
4. Опорные точки неба
4. Опорные точки неба Французский философ Рене Декарт, или, как он любил сам себя называть на латинский лад, Картезий, считал, что все небо — это один хорошо отлаженный механизм. Если посмотреть вверх несколько раз за ночь, нетрудно заметить, что звезды все вместе вращаются
Разные точки зрения на движение
Разные точки зрения на движение Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут верны, но с разных
III. Движение с «неразумной» точки зрения
III. Движение с «неразумной» точки зрения
XVI. Энергия вокруг нас
XVI. Энергия вокруг нас Как превратить энергию в работу Человеку нужны машины, для этого надо уметь создавать движение – двигать поршни, вращать колеса, тянуть вагоны поезда. Движение машин требует работы. Как получить ее?Казалось бы, этот вопрос мы уже обсуждали; работа
Задача о пробке
Задача о пробке Вот простой вопрос, над которым однако полезно подумать.В бутылку с водою попал кусочек пробки. Он свободно мог бы пройти через ее горлышко. Но при наклонении и опрокидывании бутылки выливающаяся вода почему-то не выносит этого кусочка пробки; он покидает
Бизнес с точки зрения науки, для школьников
Бизнес с точки зрения науки, для школьников Давайте теперь закончим детский лепет, уж если бизнес – это серьезное дело, давайте рассматривать его основываясь на научном подходе.Я рассматривал его на основе физико-математического моделирования. Поскольку не все
Бизнес с точки зрения науки, для взрослых
Бизнес с точки зрения науки, для взрослых Давайте теперь усложним нашу модель бизнеса, то есть будем играть уже по взрослым правилам.И так, у нас как видно из всех рисунков имеется черный ящик, этот черный ящик, какая то любая фирма, которая работает на рынке.Но, у нас