НАША ВСЕЛЕННАЯ В БУДУЩИХ ПОТОКАХ РЕКИ ВРЕМЕНИ
НАША ВСЕЛЕННАЯ В БУДУЩИХ ПОТОКАХ РЕКИ ВРЕМЕНИ
После того, как мы побывали у истоков реки времени, давайте отправимся к ее устью, обратимся к проблеме будущего Вселенной. И первый вопрос, который здесь возникает, — вечно ли будет происходить наблюдаемое сейчас расширение нашей Вселенной.
Силы взаимного тяготения небесных тел с течением времени замедляют скорость расширения Вселенной. Если тяготение не очень велико, то оно никогда не сможет затормозить разбегание галактик, и расширение будет продолжаться вечно. Но есть и другая возможность. Если эти силы велики, то они остановят разлет и заставят Вселенную снова сжиматься к сингулярному состоянию.
Тяготение зависит от средней плотности вещества во Вселенной. Чем больше эта плотность, тем сильнее гравитация. Таким образом, есть критическое значение плотности, которое отделяет случай вечного расширения от случая смены в будущем расширения на сжатие. Это критическое значение совпадает с приведенным нами в главе «К истокам реки времени» значением, отделяющим случай бесконечного пространства от случая замкнутого пространства. Напомним, что эта критическая плотность составляет примерно пять масс Солнца в кубе с длиной стороны в одну тысячу световых лет.
Как мы уже говорили, до сих пор неизвестно, больше ли истинное значение средней плотности всех видов материи во Вселенной, чем критическое. Это связано с трудностью учета «скрытой массы» — невидимых форм материй. Здесь мы остановимся на этой проблеме несколько подробнее.
Еще лет двадцать назад астрономы считали, что Вселенная в самых больших масштабах — это именно мир галактик и их систем. Изучая нашу звездную систему, Галактику, они установили, что в пределах ее видимых границ почти все вещество сосредоточено в звездах. Всего Галактика содержит примерно 200 миллиардов звезд. Общая масса их около 150 миллиардов масс Солнца. Газ и пыль между звездами дают к этому совершенно незначительную добавку (около двух процентов).
Казалось, что и другие галактики в основном состоят из светящихся звезд, а пространство между звездными системами — галактиками — практически пусто. Галактики собраны в группы и скопления разных масштабов, образуя ячеисто-сетчатую крупномасштабную структуру Вселенной. В «стенках ячеек» много галактик, а внутри — пустота. Размер типичных пустых областей, в которых галактик мало или совсем нет, около 100 миллионов световых лет. Расстояния между крупнейшими сверхскоплениями галактик (находящимися в узлах ячеистой структуры) могут быть в несколько раз больше. В еще больших масштабах светящаяся материя в виде галактик и их скоплений распределена примерно однородно. Такова общая величественная картина распределения в пространстве звездных островов — галактик.
Как можно определить усредненную по столь большим масштабам среднюю плотность вещества?
Если вся материя действительно сосредоточена в светящихся галактиках, то для этого надо подсчитать общее их_ число в достаточно большом объеме, затем определить массу средней галактики. Помножив эти числа друг на друга, мы получим полную массу вещества в данном объеме, а поделив ее на этот объем, получим интересующую нас среднюю плотность.
Надежное определение усредненной по большим объемам плотности вещества, входящего в галактики, было сделано около 30 лет назад голландским астрономом Я. Оортом. Среднее значение плотности, полученное им, примерно в тридцать раз меньше критического. Многочисленные работы в этом направлении, проделанные с тех пор, подтвердили его результат.
Если во Вселенной нет заметных количеств материи между галактиками, которая почему-либо не видна, то она всегда будет расширяться. Однако, как было уже сказано, есть основания считать, что наблюдаемые нами галактики еще далеко не все, что имеется во Вселенной. Более того, невидимая масса, вероятно, составляет основную ее часть.
Таким образом, весьма возможно, что непосредственно наблюдаемые в телескопы великолепные узоры гигантских галактических миров — это лишь жалкая малая видимая часть истинной невидимой структуры мира. Как возникли подозрения о существовании «скрытой массы»?
Важнейшие наблюдательные данные об этом сводятся к следующему. Астрономы изучают движения спутников отдельных галактик (ими являются маленькие галактики), или движения газовых облаков. Эти объекты часто движутся на расстояниях далеко за видимой границей галактики (очерченной совокупностью светящихся звезд), где, казалось бы, никакой материи в заметных количествах уже нет. Тем не менее, вычисленная по этим наблюдениям масса той или иной галактики, вокруг которой наблюдались такие движения, оказывалась иногда раз в десять больше, чем определенная по движению звезд на видимой границе галактики. Это значит, что вокруг видимого тела галактики имеется какая-то невидимая «корона», содержащая огромные массы. Тяготение этих масс никак не сказывается на движении звезд глубоко внутри короны на краю видимой галактики, но эти массы влияют своим тяготением на движение тел на окраинах короны и вне ее.
Еще большие «скрытые массы» имеются в межгалактическом пространстве в скоплениях галактик. В таких скоплениях галактики движутся хаотически. Поэтому астрофизики сначала измеряют скорости отдельных галактик, затем вычисляют полную массу скопления, создающую общее поле тяготения, которое разгоняет движущиеся в нем галактики. Чем больше наблюдаемые скорости, тем больше должна быть масса. Разумеется, эта масса включает все вещество — и видимое, и невидимое. И вот оказывается, что иногда полная масса во многие десятки раз превышает суммарную светящуюся массу всех галактик в скоплении.
Ясно, что существование «скрытой массы» кардинально меняет нашу оценку общей усредненной плотности всех масс Вселенной. Если учет только видимого вещества давал три процента от критической плотности, то учет скрытой массы в скоплениях повышает это отношение до 50 процентов. Возможно, что есть «скрытая масса» и между скоплениями галактик. Ее обнаружить особенно трудно. Но если это так, то не исключено, что полная средняя плотность равна критической плотности или даже несколько больше ее.
Таким образом, пока нельзя сказать, больше ли истинная плотность всех видов вещества во Вселенной, чем критическая, или нет. Значит, мы пока не можем сказать определенно, будет ли Вселенная расширяться неограниченно долго или же в будущем она начнет сжиматься. Но если когда-нибудь расширение и сменится сжатием, то очень не скоро — не раньше многих десятков миллиардов лет.
Что представляет собой скрытая масса? Надо прямо сказать, что физическая природа ее пока не ясна. Частично она может быть обусловлена огромным числом слабо светящихся и поэтому практически невидимых издали звезд или других несветящихся небесных тел.
Однако вероятнее, что скрытая масса является своеобразным реликтом тех физических процессов, которые протекали в первые мгновения расширения Вселенной. Скрытая масса, возможно, является совокупностью большого числа элементарных частиц, обладающих массой и слабовзаимодействующих с обычным веществом. Теория предсказывает существование таких частиц. Ими могут быть, например, нейтрино, если они обладают массой покоя, о чем пока мы не знаем.
Что произойдет во Вселенной в будущем? Ответ зависит от того, будет ли неограниченно происходить расширение Вселенной. Предположим, что плотность материи во Вселенной не превосходит критическую, расширение продолжается вечно, и посмотрим, что тогда произойдет.
Конечно, в отдаленном будущем Вселенная изменится качественно. Она совсем не будет походить на сегодняшнюю Вселенную точно так же, как эта последняя совсем не похожа на Вселенную первых мгновений после ее зарождения.
В будущей Вселенной звезды погаснут. Источником энергии, поддерживающим их свечение, являются ядерные процессы в их недрах. Но так как запасы ядерной энергии в звездах ограничены, то рано или поздно они исчерпаются. Известно, что полная продолжительность жизни нашего Солнца исчисляется 10 миллиардами лет. Более массивные звезды живут еще интенсивнее, быстрее и в конце своей эволюции взрываются. Часть их превращается после смерти в черные дыры, другие становятся очень плотными белыми карликами или сверхплотными нейтронными звездами. Плотные звезды будут остывать и превратятся со временем в совсем холодные небесные тела.
В современной Вселенной из разреженного газа рождаются новые звезды, но запасы газа также рано или поздно исчерпаются, и в будущем процесс образования звезд прекратится. Знакомый нам космолог Дж. Леметр писал: «Эволюцию мира можно сравнить со зрелищем фейерверка, который мы застали в момент, когда он уже кончается: несколько красных угольков, пепел и дым. Стоя на остывшем пепле, мы видим медленно угасающие солнца и пытаемся воскресить исчезнувшее великолепие начала миров».
Примерно через сто тысяч миллиардов лет погаснут самые последние звезды.
Что будет в совсем отдаленном будущем с холодными плотными небесными телами — остатками погасших звезд — и с крайне разреженным газом между ними?
Для их судьбы определяющим является медленный процесс распада вещества Вселенной, предсказываемый современной физикой. Оказывается, все вещество, из которого состоят звезды, планеты и мы с вами, не вечно, и в отдаленном будущем оно исчезнет. Рассмотрим, как это произойдет.
Мы хорошо знаем о возможности взаимного превращения элементарных частиц. Так, например, протон, сталкиваясь с электроном большой энергии, может превратиться в нейтрон с испусканием нейтрино. Свободный нейтрон распадается, превращаясь в протон с испусканием электрона и антинейтрино. Частицы здесь превращаются друг в друга, и рождаются новые частицы.
Но во всех этих и других реакциях, в которых участвуют частицы, состоящие из кварков, сохраняется барионное число. При превращении, например, протона в нейтрон u-кварк превращается в d-кварк. В реакции распада нейтрона происходит обратное изменение. Сами кварки при этом никуда не деваются, барионное число сохраняется. Таким образом, во всех известных до сих пор реакциях выполняется закон сохранения барионного числа.
Этот закон обеспечивает стабильность вещества Вселенной. Из-за закона сохранения барионного числа протон не распадается на более легкие частицы, например, на позитрон и световые кванты. Но тут читатель может задать вопрос: «Почему, собственно, протон должен вообще иметь тенденцию распадаться на более легкие частицы? Если протон состоит из каких-то частей (кварков), накрепко связанных цветовыми силами в единую систему, то с чего вдруг могут возникнуть какие-то причины его распада?»
Дело в том, что тенденция к распаду частиц на более легкие с выделением энергии отражает всеобщий закон природы: система стремится прийти в состояние с минимумом энергии, выделив при этом избыток имеющейся энергии.
Иллюстрацией этого закона могут служить следующие простые примеры. Пусть мы сжали пружину (сообщили ей энергию) и закрепили ее защелкой. Пружина стремится распрямиться, выделить сообщенную ей при сжатии энергию, прийти в состояние с минимумом энергии. Если защелку открыть или если она ненадежная и сама случайно «сработает», то так и произойдет. Другой пример. Тяжелый камень находится в небольшой впадине на вершине холма. Если его подтолкнуть, сообщив ему сравнительно небольшую энергию, способную поднять его на край впадины, то дальше он уже сам скатится вниз по внешнему склону холма, выделив в конце пути куда большую энергию, чем получил при первоначальном толчке, и придет в состояние с минимумом энергии у подножия холма.
Таким образом, у системы, обладающей запасом энергии (как говорят, возбужденной системы), всегда есть «желание» от нее избавиться, прийти в наинизшее энергетическое состояние. Как говорят физики, ей это «энергетически выгодно». Для пребывания в возбужденном энергетическом состоянии надо, чтобы была какая-то причина, мешающая системе освободиться от избытка энергии (защелка или впадина в приведенных выше примерах).
Теперь вспомним, что энергии всегда соответствует масса. Значит, возбужденное состояние всегда более массивно, чем невозбужденное. Теперь уже нетрудно понять, что если элементарная частица в принципе может распасться на более легкие, сумма масс которых меньше исходной частицы, то это означает, что при распаде выделилась энергия, эквивалентная разности масс исходной частицы и сумме масс, возникающих при распаде частиц. То есть такой распад энергетически для частицы выгоден.
Чтобы он не происходил сам собой, должна быть какая-то причина, ему препятствующая, или, на языке физиков, какой-то запрет. В случае протона препятствием превращения его в позитрон (который гораздо легче протона) с выделением энергии в виде световых квантов является закон сохранения барионного числа. Отметим, кстати, что распад свободного нейтрона происходит сам собой, так как масса нейтрона больше суммы масс возникающих частиц и этот процесс энергетически выгоден.
Сделаем еще одно пояснение. Почему мы говорим, что протон, если распадается, то не превращается целиком в кванты света, а обязательно остается еще и позитрон? Дело в том, что протон электрически заряжен, а электрический заряд не может исчезнуть — это строго сохраняющаяся величина, определяющая электрическое поле на большом от него расстоянии. Поэтому при распаде протона обязательно должна возникнуть положительно заряженная частица, наследующая его электрический заряд. Позитрон и является наилегчайшей положительно заряженной частицей.
Теперь читатель уже, наверное, сам может сделать вывод, что позитроны (так же, как и электроны) должны быть стабильны, они никогда не распадутся, ибо более легких заряженных частиц не существует, а электрический заряд исчезнуть не может.
Помимо протона, неограниченно долго (как считалось) могут существовать и другие стабильные атомные ядра, такие, как, скажем, ядра гелия или железа. Нейтроны, входящие в состав этих ядер, столь же стабильны, как и протоны, в отличие от свободных нейтронов, которые распадаются за 15 минут, превращаясь в протоны.
В разделе «Великое объединение» мы узнали, что существуют частицы — переносчики универсальной силы (X- и Y-частицы), обмен которыми ведет к нарушению закона сохранения барионного числа, и кварки при этом могут исчезать, превращаясь в лептоны. Правда, эти X- и Y-частицы могут рождаться только при очень больших энергиях, недостижимых ни в каких реальных процессах в сегодняшней Вселенной. Однако X- и Y-частицы могут, хотя и на очень короткий промежуток времени, рождаться в виртуальных процессах. На рис. 12 показана схема превращения, которое может произойти в протоне, состоящем из двух u-кварков и одного d-кварка из-за рождения виртуального Х-бозона. Два u-кварка с помощью виртуального Х-бозона превращаются в антилептон (позитрон) и антикварк d. Этот антикварк объединяется вместе с d-кварком в систему ?0-мезон. Последняя частица затем распадается на световые кванты.
Таким образом, в результате этого процесса протон превратился в позитрон и световые кванты. Но ни позитрон, ни световые кванты не обладают барионным числом. Барионное число исчезло, протон распался! «Защелкой», мешающей произойти энергетически выгодному процессу, здесь являлась очень большая масса Х-бозона. Но эта «защелка» не абсолютно надежна. Иногда она «ломается», и происходит распад.
К счастью, такие распады протона чрезвычайно редки, иначе бы все вещество Вселенной давно бы распалось. Редкость данного процесса обусловлена тем, что очень мала вероятность обмена внутри протона сверхтяжелым виртуальным бозоном. В простейших вариантах теории Великого объединения среднее время жизни протона оценивалось в десять тысяч миллиардов миллиардов миллиардов лет! Но существуют варианты теории, которые приводят к продолжительности жизни протона в тысячу раз большей. Это фантастически большие сроки. Напомним, что с момента начала расширения Вселенной до наших дней прошло «всего» около десяти миллиардов лет.
рис.12
Можно ли каким-либо способом зарегистрировать этот редчайший процесс и тем самым подтвердить правильность теории? Да, в принципе можно. Для этого надо взять очень много протонов. Вероятность распада каждого из них очень мала, но хотя бы один протон из большой совокупности распадается за приемлемое для наблюдения время. Так, если взять 10 тонн вещества, то при указанном выше времени жизни протона (десять тысяч миллиардов миллиардов миллиардов лет) за год хоть один из них да распадется.
Если бы удалось зарегистрировать такой распад, то это было бы прямым подтверждением теории Великого объединения. Конечно, зарегистрировать распад единичного протона из такой большой массы очень трудно. Эксперименты по поискам распада протона были начаты в 1979–1980 годах. Суть их заключалась в следующем. Берется большое количество какого-либо вещества, скажем, несколько тысяч тонн воды или железа. Это вещество вместе со специальными счетчиками, которые могут регистрировать частицы — продукты распада протона, — помещают под толщей грунта (например, в тоннеле под горным массивом или в глубокой шахте). Это делается для того, чтобы защитить всю установку от действия космических лучей, создающих помехи в ее работе.
Одна из первых попыток найти распад протона была осуществлена на Баксанской подземной лаборатории Института ядерных исследований АН СССР на Кавказе. Затем были проведены наблюдения на еще более массивных установках. К настоящему времени достоверных случаев распада протона зарегистрировано не было. Это означает, что время жизни протона больше, чем было оценено в простейших вариантах теории, и должно превышать сто тысяч миллиардов миллиардов миллиардов лет. Сейчас обсуждаются проекты и строятся детекторы с массой, превышающей десятки тысяч тонн.
Подчеркнем, что описанному выше распаду за счет рождения виртуальных X- и Y-бозонов подвержены не только протоны, но также и нейтроны в стабильных атомных ядрах. Такие распады нейтронов должны происходить столь же редко, как и протонов.
Приведем еще следующий любопытный факт. Впервые нижний возможный предел жизни протона был оценен физиком Гольдхабером, который использовал в качестве массы детектора… человеческое тело, а в качестве счетчиков — здоровье человека! Он рассуждал следующим образом, Распад протонов (и нейтронов в стабильных ядрах) в теле человека порождает процессы, аналогичные радиационным, разрушающим кости.
Известно, что за время человеческой жизни (около 70 лет) эти процессы, если они и есть, то совершенно незаметны, чтобы повлиять на наше здоровье. Отсюда можно оценить максимальную дозу излучения, которую мы получаем в течение жизни из-за распада протонов, а значит, и количество распавшихся протонов за 70 лет. Зная это число, уже легко рассчитать минимально возможное время жизни протона. Оказывается, что протон должен жить в среднем не менее десяти миллионов миллиардов лет. Конечно, эта оценка много грубее приведенных выше, но зато она и получена совершенно элементарным путем.
Итак, пока распад протона не обнаружен экспериментально и продолжаются упорные поиски этого процесса, требующие, помимо всего прочего, огромных материальных затрат для строительства гигантских подземных лабораторий. Физики надеются на успех таких экспериментов.
Несмотря на отсутствие пока прямых экспериментальных данных, вся совокупность наших физических знаний указывает на то, что вещество Вселенной нестабильно и хотя очень медленно, но распадается.
Мы помним также, что медленно происходит и процесс квантового испарения черных дыр, которые остаются после смерти некоторых массивных звезд и существуют в ядрах галактик.
Таким образом, и остывшие звезды, и разреженный газ, а затем и черные дыры в далеком будущем исчезнут из Вселенной.
Звезды могут исчезать, растворяясь
постепенно
И теряясь безвозвратно в черном хаосе
Вселенной.
П. Шелли
Наконец, в столь отдаленном будущем, что не хочется даже называть цифры, во Вселенной останутся только редкие электроны и позитроны, разбросанные в пространстве на гигантские расстояния друг от друга. Какие-либо процессы во Вселенной будут невероятно медленны, но зато и пространственные масштабы будут невообразимо большими. Так закончится взрыв Вселенной в далеком будущем, так необъятно разольется река времени, исчезая в бесконечности, насколько нам удается проследить за ней мысленным взором.
Но давайте вспомним, что есть и другая возможность, которую специалисты считают более вероятной. Средняя плотность всех видов материи может оказаться, хоть ненамного, но больше критического значения. Тогда расширение в отдаленном будущем сменится сжатием. Плотность материи будет нарастать, температура повышаться, пока мы не придем к новой сингулярности.
И тогда мы опять приходим к бурным процессам в сингулярности, рассмотренным в предыдущем разделе.
И все, и вся Материя живет,
Смерть — это лишь существованья вид.
Как пузыри средь водного покрова,
Мы лопаемся, став водою снова.
А. Поуп