Беспорядок, который нас пугает, а должен бы, напротив, радовать

We use cookies. Read the Privacy and Cookie Policy

Беспорядок, который нас пугает, а должен бы, напротив, радовать

«Куда же девался Боря? Посмотрю сперва за домом, потом в гараже у соседа, потом в Сережином подъезде».

Конечно, мать не помнит, что находила своего Борю за домом 65 раз, в гараже — 44 и у Сережи — 32 раза, но это соотношение оставило свой след, и она уверенно начинает поиски по нисходящим вероятностям.

Инженер командируется в Таллин. Он слышал, что в столице Эстонии солнечных дней в году не больше тридцати, и берет в дорогу плащ. Он едет только на неделю, быть может, будет солнце, но статистика за дождь, и инженер склоняется перед статистикой.

Мы часто пользуемся статистикой (сознательно или бессознательно), чтобы угадать событие из нескольких возможных. С ее помощью мы хотим узнать стремление предмета предвидеть ситуацию. Детали предмета при этом нас, как правило, не интересуют, они в известном смысле здесь не играют роли, хотя, конечно, сами по себе ценны, и при другом — нестатистическом — подходе могут нас даже очень интересовать.

И что же, большей частью мы не ошибаемся. Равнодушная к причинам, неинтересующаяся — «почему», статистика с высокой точностью может сказать о любом предмете: «как». Лишь бы было много событий в прошлом, лишь бы было где искать статистическую закономерность.

Воспользуемся замечательными свойствами статистики, чтобы разобраться в одном чрезвычайно важном для нас вопросе — в «механических свойствах» времени, точнее, в том, как, в какую сторону с течением времени развиваются механические (и вообще физические) процессы в системах, состоящих из очень многих тел (ими могут быть и молекулы газов, жидкостей и твердых тел; наука, изучающая процессы в телах, рассматриваемых как собрания большого числа частиц, называется статистической физикой).

В одной из предыдущих главок («„Покорный вектор“ — величайшее изобретение человечества») мы упомянули о дачниках, обнаруживающих весной на даче какой-то беспорядок. Кто его делает? Мыши? Майские жуки, пролезшие сквозь щели? Нет, его делает Время.

Да, время, образно говоря, обладает чисто механическим свойством перемещать предметы. Конечно, на самом деле предметы перемещаются воздействием на них других предметов. Но нам кажется, что повинно время, и при этом чувствуется тенденция: вопреки тому, как часто говорится, «время работает на нас», «время все улучшает» и т. п., — оно, в рассматриваемом сейчас смысле, всегда и очень определенно работает против нас. Оно «старается» разрушить созданное нами, «стремится» все перемешать, сровнять с землей, уравновесить. Где нет людей, там нет порядка, а тот, что был, неукоснительно идет на нет, все больше переходит в беспорядок.

Но как говорить о «работе», о «стремлении» чего-то неосязаемого? Ведь время, если можно так сказать, еще невидимее таких материальных сущностей, как поля. Электромагнитное поле отклоняет стрелку прибора, тяжесть растягивает пружину безмена. В обоих случаях через нечто промежуточное (прибор, датчик) мы делаем невидимое видимым, с помощью физического инструмента обнажаем движения, таящиеся в полях. А как обнажить тенденции, стремления, таящиеся во времени?

Одно только свойство времени мы научились делать зримым: равномерный ход вперед (по крайней мере, «равномерный» в условиях Земли, в условиях инерциальной системы; см. стр. 52). Но часы, помогающие нам в этом, не годятся для показа более активных свойств. Вообще тут нужны не только физические средства, но и математические — те, которыми располагает статистика и ее основа — теория вероятностей, так называемый закон больших чисел.

Не будем пересказывать основные положения статистики, известные по учебникам математики и физики. Приведем пример, убедительный и без цифр, пример, показывающий, чт? выбирает Время, предоставленное само себе, — порядок или беспорядок.

Поставим следующий воображаемый опыт (опыты подобного рода часто «ставят» физики, и такой прием рассуждений не вызывает никаких сомнений). Посадим за миллион пишущих машинок миллион мартышек, предварительно показав им, что делают с машинками люди, и научив мартышек вставлять и выдергивать бумагу. Обезьяны, обезьянничая, захлопают по клавишам, из машинок полетят потоки абракадабры. Как раз вот этим самым — чепухой, примерно одинаковым числом повторов каждой буквы на каждом из листков, — листки будут поразительно похожи один на другой. Мы с полным основанием сможем сказать: «Не мартышки печатают листки, печатает их Время, и все одно и то же — чепуху. Вот оно каково — оно стремится к беспорядку».

В конце концов оно смогло бы сотворить и что-нибудь порядочное, осмысленную фразу вроде: «Я помню чудное мгновенье…» Но для того чтобы листок с подобной фразой стал реальностью, нам нужно было бы, как говорит статистика, не выходить из мартышечьего машинописного бюро в течение многих миллионов лет.

Итак, время не просто идет вперед, идет от прошлого в будущее, оно ведет с собой беспорядок. Факт этот имеет для всей нашей жизни исключительно большое значение, потому что мы вынуждены вечно воевать со временем. А это нелегко: время очень могуче. Куда как проще быть с ним заодно (и сеять беспорядок), чем с ним бороться (создавать порядок).

Легко перетасовать колоду карт; разложить их в правильной последовательности сложнее. Ничего не стоит перемешать соль и сахар; а кто сумеет восстановить порядок — разложить полученную смесь на составляющие!

Физики придумали для меры беспорядка, к которому стремится изолированная, предоставленная самой себе физическая система, особое название: энтропия (исторически сперва ввели термин «энтропия», позднее стали говорить о беспорядке). На первых порах, как это обычно бывает с новыми понятиями физики, энтропия казалась чем-то невероятно сложным. Знаменитый французский математик конца прошлого и начала этого столетия Анри Пуанкаре назвал понятие энтропии «чудовищно абстрактным». А теперь (точнее, после того как доказали, что энтропия характеризует беспорядок) слово «энтропия» не вызывает, как правило, никаких нравственных страданий. Так же, как и тот физический закон, в выражении которого оно применяется, так называемый закон возрастания энтропии:

Энтропия изолированной физической системы может только возрастать, но не может уменьшаться.

Иногда этот закон называют еще «вторым законом термодинамики», так как он обычно применяется в учении о теплоте, а последнее широко пользуется главой теоретической физики, называемой термодинамикой.

А где «первый закон термодинамики»? Есть и такой. Он говорит о том, что изменение энергии большой физической системы складывается из тепловой и нетепловой частей, причем общая сумма этих частей при таком изменении не меняется. Первый закон термодинамики часто (но не совсем точно) называют законом сохранения энергии применительно к тепловым процессам.

В учебниках для иллюстрации действия закона возрастания энтропии часто приводят пример с двумя сообщающимися сосудами: первый наполнен газом с давлением в 1 атмосферу, во втором нет ни молекулы. Открыли оконце в перегородке между сосудами, и газ из наполненного резервуара тотчас заструился в вакуум. Через очень короткое время убеждаются, что в каждом из сосудов — поровну молекул газа. Потом можно ждать хоть вечность, но это положение практически не изменится.

Но что, если вечности не ждать, а повернуть время вспять? Физически сделать это, разумеется, невозможно, но можно чуточку схитрить. Если бы мы сумели снять на кинопленку расширение газа, то потом нам уж ничего не стоило бы пустить пленку наоборот. И мы увидим странную картину: из одного равнонаполненного газом сосуда молекулы вдруг стали быстро вылетать в другой сосуд, и вот через несколько мгновений в одном сосуде образовалось давление в 1 атмосферу, а в другом — идеальный вакуум.

Этот воображаемый опыт нам понадобился для иллюстрации очень важного положения: и в случае превращения беспорядка в порядок не нарушается ни один закон микроскопической физики. Все эти законы допускают обратимость процессов в природе, «обратимость времени».

Но в общем-то избежать влияния закона возрастания энтропии невозможно. А он ограничивает применение других законов физики: он требует, чтобы в результате всякого процесса в конечном счете порядок хоть чуточку уменьшился бы, а беспорядок хоть чуточку возрос. Принцип возрастания энтропии по самому своему смыслу является принципом необратимости макроскопических процессов.

Как все сказанное связать с энергией, с взаимным превращением одних ее форм в другие?

Мы делили энергию на сконцентрированную и рассеянную, на восполняемую и невосполняемую, на четыре группы по происхождению: от Солнца, от притяжения Луны, от ядерных перестроек, от внутреннего тепла Земли. Мы можем делить ее еще на «благородную» и «неблагородную», или высшие и низшая формы. Первая, высшие формы энергии, — механическая, электромагнитная; вторая, низшая форма энергии — тепловая. В чем главное различие между ними, в чем «неблагородство» тепловой энергии?

Благородные формы энергии способны целиком превращаться в другие, полезные формы энергии, в работу. Тепловая, в лучшем случае, может быть превращена в полезную энергию лишь частично.

Почему?

Высшие виды энергии — все упорядоченные. Механическая энергия связана с упорядоченной частью движения молекул — по траекториям, одна рядом с другой. Падает ли вода, вращается ли колесо турбины, движется ли взад-вперед поршень двигателя — все это движения порядка, все это выделяется из стихий, находится в резком с ними неравновесии. Электромагнитная энергия вызывает образ строгого потока волн, движения по проводам потока электронов. У этих форм есть куда изменяться: от своего порядка к беспорядку; они способны соблюсти требование роста энтропии.

Иное — тепловая энергия. Она — сама беспорядок. Это энергия хаотического движения молекул вещества. Энергия теплового движения частиц не может перейти сама собой в механическую энергию, способную совершить работу, потому что это значило бы самопроизвольное превращение беспорядка в порядок, что запрещено законом физики.

Как бы ни были велики запасы тепловой энергии, они не могут быть превращены в работу, стать полезными, если речь пойдет о том, чтобы только «поднять их вверх». В Земле хранится очень много такой энергии. Охладив планету, масса которой равна 6?1024 (6 миллионов миллиардов миллиардов) килограммов, всего на 1 градус, мы получили бы 1,2?1024 килокалорий тепла — в миллиард раз больше, чем вырабатывают сейчас каждый год все вместе электростанции мира. Но это невозможно; такого рода тепло бесполезно для электростанции: извлечь его не позволяет закон роста энтропии.

Мы не смогли бы превратить в работу тепловую энергию Земли, даже если бы вся планета вдруг резко разогрелась бы, а мы в жаростойких костюмах поспешили воспользоваться этим для выработки электроэнергии.

Многие убеждены, что, для того чтобы заработала паровая машина, достаточно дать пар. Но это совершенно неверно. Беспорядок не может сам по себе превратиться в порядок.

Чтобы работали тепловые двигатели, обязательно находят где-то холодильник, может быть обыкновенную воду при обычной температуре. Почему? Нетрудно догадаться. Хотя «с двух сторон» машины и будут находиться два источника тепла низшей формы энергии: горячий пар и холодная вода для охлаждения, — но само по себе соединение этих двух источников создаст какое-то упорядоченное движение. Им будет переток более «горячих» (то есть обладающих более высокой средней кинетической энергией) молекул в сторону менее «горячих» молекул (то есть молекул с менее высокой средней кинетической энергией). А это уже порядок, это уже возможность стремиться к беспорядку и, значит, совершать работу.

Здесь та же логика, как в утверждении, что большая потенциальная механическая энергия озера на горе бесполезна для электростанций, пока озеру не найдут хорошего слива. Горячий пар — одна потенция, вода — другая. Лишь в соединении они способны создать энергетический поток, который может производить работу.

Теперь, пожалуй, вы можете спросить: почему так странно названа эта глава? Чем пугает нас беспорядок и чем он должен вдруг радовать?

С тех пор как был открыт закон возрастания энтропии, многие ученые стали развивать «теорию тепловой смерти»: раз все идет от высших форм энергии к низшей, тепловой, — остывает, односторонне превращается в беспорядок, — то, дескать, мир рано или поздно весь остынет. Ведь беспорядок порядком уже не сделать.

То, что предсказывали пессимисты, было бы истинным холодом смерти. Даже если бы все вещество Вселенной можно было уничтожить, превратив его массу в энергию (а 1 грамм массы вещества смог бы быть преобразован в 9?1020 эргов энергии), то и тогда мировое пространство нагрелось бы от минус 270–273 градусов всего до минус 260 градусов, то есть лишь примерно на 10 градусов.

Бояться этого, однако, не приходится, даже если думать о поколениях людей, которые будут жить через многие миллионы лет. Прежде всего закон возрастания энтропии сформулирован и многократно проведен для ограниченных физических систем. Что такое «энтропия всей Вселенной» — это вряд ли кому-нибудь сегодня ясно.

Человек уже показал, что разум в состоянии находить всё новые источники энергии, способные поддерживать бесконечный перепад температур, и это в принципе может продолжаться вечно.

А радоваться чему? Тому, что основные законы физики со временем не изменяются. Само существование порядка и беспорядка в раз навсегда положенной последовательности, немыслимость их поворота — тоже благотворный порядок.