Газообразное — третье состояние вещества

Газообразное — третье состояние вещества

Не задумывались ли вы когда-нибудь над тем, какое состояние вещества для нас всего важнее? Почти все, кому я задавал такой вопрос, прося ответить не подумав, ответить сразу, ошибались. Потом лишь, в следующий момент спохватывались: «Газ, конечно!»

Да, безусловно, газ. Живем мы на твердом веществе, живем у жидкого (даже то, что едим, на 90 процентов состоит из воды), но всего важнее для нас третье состояние вещества, потому что мы живем в нем.

Если рыб называют морскими существами, кротов — земляными, то было бы вполне естественно применять иногда к человеку определение «существо воздушное». Воздух — наша стихия, без него нам не прожить и десяти минут.

Мы живем на дне чудесного океана, прозрачность которого, бывает, вводит в заблуждение наивных: не сразу соглашаются, что он тяжел. А он весит, как мы говорили, 5000 триллионов тонн. И он фантастически глубок, по последним данным — до 3000 километров.

Мы уже говорили о некоторых отличиях газообразных стихий от твердых тел и от жидкостей. Назовем еще одно: молекулы твердых тел и жидкостей — каждые в своей среде — вплотную прижимаются одна к другой. Совсем иное у газов. Плотность газа, находящегося под нормальным атмосферным давлением, примерно в 100 раз меньше. Это значит, что средние расстояния между молекулами газа очень велики. Чтобы столкнуться с другой молекулой, газовая молекула должна пройти расстояние, во много раз превышающее собственный размер. Частицы газа «живут» куда обособленнее частиц жидкостей и твердых тел.

Примерно 300 лет назад английский физик и химик Роберт Бойль (1627–1691) и независимо от него французский аббат Мариотт (1600–1684) открыли очень важный газовый закон, который с тех пор называется законом Бойля — Мариотта; читается он так:

Объем данной массы газа обратно пропорционален давлению, если температура постоянна.

Или в несколько иной формулировке:

Произведение давления на объем есть величина, постоянная для данной массы газа при неизменной температуре.

Закон этот нашел широчайшее применение у всех, кто так или иначе соприкасается с необходимостью рассчитывать устройства, в которых происходят изменения давлений и объемов газов, например, при проектировании двигателей внутреннего сгорания или в вакуумной технике.

Другой, не менее важный закон в области газов был сформулирован итальянским физиком Амедео Авогадро (1776–1856). Закон этот читается так:

В равных объемах любых двух газов, находящихся при одних и тех же давлении и температуре, содержится одинаковое число молекул.

Выходит, что отношение масс двух газов одинаковых объемов при одинаковых давлениях и температуре равно отношению их молекулярных весов. Законом Авогадро воспользовались, чтобы получить таблицу отношений атомных масс. Отношение масс атомов кислорода и водорода равно 16 : 1,008. И вот ученые договорились считать атомный вес кислорода в точности равным 16. В таком случае молекулярный вес кислорода (молекула кислорода состоит из двух атомов) равен 32, а вес молекулы водорода — 2,016. Они договорились также ввести новую единицу массы для каждого вещества: граммолекулу, или моль.

Граммолекулой, или молем, называется количество вещества, масса которого в граммах равна молекулярному «весу».

Выходит, например, что одна граммолекула водорода равна 2,016 грамма.

Число молекул в одной граммолекуле всегда одно и то же, независимо от вещества. Когда это число подсчитали, оказалось, что оно равно: N = 6,02?1023.

Величину N назвали «числом Авогадро».

По закону Авогадро, 1 граммолекула любого газа занимает один и тот же объем при одинаковых давлениях и температуре. При температуре 0 градусов и давлении 1 атмосфера объем граммолекулы получается равным 22,4 литра.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

СОСТОЯНИЕ ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ К НАЧАЛУ 20-х ГОДОВ XX ВЕКА

Из книги автора

СОСТОЯНИЕ ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ К НАЧАЛУ 20-х ГОДОВ XX ВЕКА К началу 20-х годов XX в. в теоретической механике создалось своеобразное положение. Развитие физики к этому времени показало, что нет никаких перспектив создать механистическую картину мира, и механика потеряла


Полуспиритическое состояние и кризис в науке

Из книги автора

Полуспиритическое состояние и кризис в науке Всё смешалось в доме элементов. В том самом великолепном здании, которое построил Д.И.Менделеев, — в знаменитой периодической системе. Так, во всяком случае, казалось многим прославленным физикам и химикам начала XX столетия.


26. Стационарное состояние

Из книги автора

26. Стационарное состояние Принцип производства энтропии. Организм как открытая системаВыше была описана направленность термодинамических процессов в изолированной системе. Однако реальные процессы и состояния в природе и технике являются неравновесными, а многие


СОСТОЯНИЕ НАУЧНЫХ ЗНАНИЙ В ИЮНЕ 1940 г.

Из книги автора

СОСТОЯНИЕ НАУЧНЫХ ЗНАНИЙ В ИЮНЕ 1940 г. ТВЕРДО УСТАНОВЛЕННЫЕ И ОБЩЕИЗВЕСТНЫЕ СВЕДЕНИЯ О ДЕЛЕНИИ1.57. Все перечисленные ниже сведения были общеизвестны к июню 1940 г. в Соединенных Штатах и за границей:(1) Три элемента уран, торий и протактиний при бомбардировке их нейтронами


СОВРЕМЕННОЕ СОСТОЯНИЕ

Из книги автора

СОВРЕМЕННОЕ СОСТОЯНИЕ 13.1. В результате работы организаций Манхэттенского Округа в Вашингтоне и Тенесси, групп ученых в Беркли, Чикаго, Колумбии, Лос-Аламосе и в других местах, промышленных групп в Клинтоне, Хэнфорде и многих других местах, конец июня 1945 г. застает нас в


10. Взрыв или устойчивое состояние

Из книги автора

10. Взрыв или устойчивое состояние Представьте себе картину постепенного расширения космоса, а затем пустите эту картину в обратном направлении, как это делают в кино. Ясно, что в «скрытом мраком прошлом и бездне времен», как однажды сказал Шекспир, должен был быть такой


X. Строение вещества

Из книги автора

X. Строение вещества Молекулы Молекулы состоят из атомов. Атомы связаны в молекулы силами, которые называют химическими силами.Существуют молекулы, состоящие из двух, трех, четырех атомов. Крупнейшие молекулы – молекулы белков – состоят из десятков и даже сотен тысяч


XII. Состояния вещества

Из книги автора

XII. Состояния вещества Железный пар и твердый воздух Не правда ли – странное сочетание слов? Однако это вовсе не чепуха: и железный пар, и твердый воздух существуют в природе, но только не при обычных условиях.О каких же условиях идет речь? Состояние вещества определяется


1.5. Современное состояние исследований по проблеме АКО

Из книги автора

1.5. Современное состояние исследований по проблеме АКО Заранее тут ничего нельзя сказать. И это, конечно, как раз самое интересное. А. Милн. «Винни-Пух и все-все-все» Что же нам известно о современном уровне угрозы? Прежде всего дадим некоторые определения. Под объектами,


Твердое — первое состояние вещества

Из книги автора

Твердое — первое состояние вещества Древнегреческий философ Эмпедокл (490–430 гг. до н. э.) считал, что мир построен из четырех стихий, или элементов: земли, воды, воздуха и огня. Учение Эмпедокла разделяли многие ученые древности, в том числе и Аристотель. Потом оно проникло


Жидкое — второе состояние вещества

Из книги автора

Жидкое — второе состояние вещества Помня о силах, действующих между молекулами или атомами твердых тел, нетрудно догадаться, почему эти тела плавятся. Потому что при повышении температуры колебания каждого отдельного атома около его нормального положения становятся


Плазменное — четвертое состояние вещества

Из книги автора

Плазменное — четвертое состояние вещества Возьмем металлическое тело, скажем пулю, и, положив ее в жароупорный тигелек, поставим тигелек в электропечь. Пройдет немного времени, и пуля расплавится, превратится в жидкость, вещество перейдет во второе состояние.Но будем


КАКИЕ ВЕЩЕСТВА?

Из книги автора

КАКИЕ ВЕЩЕСТВА? Наладив и проверив точность инструмента для количественного измерения радиоактивности, Мария занялась определением веществ, которые испускали урановые лучи, поскольку, как она заметила в своей докторской диссертации, «очень маловероятно, чтобы