СОСТОЯНИЕ ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ К НАЧАЛУ 20-х ГОДОВ XX ВЕКА

We use cookies. Read the Privacy and Cookie Policy

СОСТОЯНИЕ ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ К НАЧАЛУ 20-х ГОДОВ XX ВЕКА

К началу 20-х годов XX в. в теоретической механике создалось своеобразное положение. Развитие физики к этому времени показало, что нет никаких перспектив создать механистическую картину мира, и механика потеряла свои позиции ведущей физической дисциплины. Вместе с тем в такой области, как механика системы материальных точек и твердого тела, в разработке общих методов аналитической динамики продвижение существенно замедлилось. Многие ученые подходили к решению методологических вопросов с позиций метафизических, с позиций идеалистической философии, мало кто пытался диалектически, с материалистических позиций осмыслить процесс развития науки. Весьма ощутим был отрыв теории от практики, отрыв «университетской науки» от технических применений механики. В этих условиях могло казаться основательным и оправданным мнение, что классическая механика себя исчерпала, превратившись в чисто формальную математическую дисциплину.

Однако, как показало дальнейшее развитие, и в упомянутых выше относительно «застойных» областях, и в других областях механики было много назревших фундаментальных проблем и были средства для продолжения исследований.

В области основ классической механики назрел вопрос об углублении анализа ее аксиом и об ее аксиоматическом построении. К началу XX в. проблемы аксиоматизации ставились на более высоком уровне абстрактности и логической строгости, чем это было раньше. Этот процесс, естественно, прежде всего коснулся математики и был тесно связан с развитием математической логики. Вместе с тем пересмотр, например, основ геометрии, начатый в XIX в. Лобачевским и Риманом, исторически и логически был неотделим от исследования основ физики и механики.

Геометризация механики, которой усиленно занимались во второй половине XIX в., не могла не означать и «механизации» геометрии — более тесного переплетения геометрии и механики. Геометрия Лобачевского привела к разработке механики гиперболического пространства, теория относительности вдохнула новую жизнь в геометрию Римана. Д. Гильберт, так много сделавший в области основ геометрии, в математической логике, принимал участие и в разработке проблем теоретической физики, и не случайно, что в своем известном докладе на Международном конгрессе математиков в Париже (1900) он включил в перечень актуальных проблем аксиоматизацию классической механики. Работы по этой проблеме до 1920 г. были немногочисленны (ею занимался главным образом Гамель), здесь открывалось широкое поле для исследований, причем имелись и новые средства исследования — можно было использовать работы по математической логике и по аксиоматическому методу в математике.

В аналитической механике системы материальных точек и твердых тел были свои назревшие вопросы. Теория Гамильтона — Якоби — Остроградского, казалось, получила законченную формулировку на языке теории непрерывных групп (С. Ли) — интегрирование уравнений динамики оказалось равнозначным построению группы контактных преобразований. Но, как обычно, и формально завершенная теория, если она в известной степени правильно отображает действительность, с неизбежностью приводит к новым постановкам вопроса. Задачи динамики были сформулированы на языке теории групп — значит, должен был возникнуть вопрос о придании уравнениям динамики такой формы, в которой явно были бы использованы величины, характеризующие соответствующую группу преобразований. Первые результаты в этом направлении были получены А. Пуанкаре: он вывел для консервативных систем уравнения «в групповых переменных» (1900), что открыло новую главу аналитической механики. К 1920 г. дальше Пуанкаре в этом направлении никто не пошел.

Значительно энергичней разрабатывалась в первые десятилетия XX в. неголономная механика, но и здесь (к 1920 г.) оставалось сделать еще очень многое. Не были приведены в систему уже полученные результаты (Чаплыгина, Больцмана, Аппеля, Гамеля, Воронца, Вольтерра), не была выяснена степень общности предположений, из которых исходили при выводе различных форм уравнений движения неголономных систем. Вопрос о нелинейных неголономных связях едва был затронут. Между тем если вопросы аксиоматизации и построение аналитической динамики в групповых переменных представлялись в достаточной мере «теоретическими», то исследование неголономных систем все чаще рассматривалось как злободневная техническая задача. Механика велосипеда, автомобиля, вычислительных приборов, позже различных автоматических и следящих систем все настойчивее и обильнее ставила задачи на неголономные системы.

Следует особо остановиться на проблеме вращения твердого тела вокруг неподвижной точки — одной из «сквозных» проблем классической механики. Замечательное открытие С.В. Ковалевской не только обогатило науку еще одним случаем интегрируемости уравнений движения в этой задаче, не только вызвало ряд исследований (преимущественно отечественных ученых), которые дали еще несколько (более частных) случаев интегрируемости, но и указало на определенные границы применимости в этой задаче средств математического анализа, разработанных в XIX в. Как и в задаче трех (и большего числа) тел, выяснилось, что случаи интегрируемости только изолированные пункты в области, для исследования которой нужны новые методы. Такие методы могла и должна была дать качественная теория дифференциальных уравнений, которая оформилась в самостоятельную дисциплину в конце XIX в. Но решение технически важных задач нельзя было откладывать в ожидании решительных успехов теории; не приходилось сомневаться, что для достижения таких успехов необходимо проделать огромную предварительную работу. Практический подход должна была подсказать история «задачи п тел»: в небесной механике пошли по пути создания вычислительных методов достаточной силы, чтобы проводить необходимые расчеты с высокой степенью точности. Между тем в задаче о вращении твердого тела вокруг точки собственно вычислительные методы применялись до XX в. в ограниченных размерах.

После первой мировой войны сложность гироскопических приборов возрастает, область их применений расширяется. Гироскопы приобретают важное значение в технике. Поэтому к началу 20-х годов при решении проблемы вращения твердого тела вокруг точки появляется необходимость в применении целесообразных вычислительных методов, в исследовании новых, более сложных случаев с привлечением тонких математических средств и с использованием наводящих и контролирующих данных эксперимента. Теория движения твердого тела с закрепленной точкой становится основой для стремительно развивающейся прикладной теории гироскопов.

Выше речь шла о механике системы материальных точек и механике твердого тела; естественно было бы говорить о них как о частных случаях механики системы твердых тел. Аппарат аналитической механики в том виде, в каком он был у Лагранжа, достаточен для трактовки задач механики системы в такой общности. Однако историческим фактом является то, что «земная» механика системы твердых тел не выделилась в особый раздел классической механики в течение всего XIX в. Уравнения Лагранжа второго рода стали рабочим аппаратом в теоретической физике лишь во второй половине века, а при исследовании технических задач — в самом конце века. Но повышение требований к точности и полноте анализа в динамике машин заставило и здесь перейти к применению методов аналитической механики.

В связи с этим стало выявляться то специфическое, что характеризует задачи механики системы тел, в частности, в связи с методикой определения реакций связей. Работа в этой области развернулась лишь в начале XX в., и к 1920 г. в механике системы тел многое еще оставалось нерешенным. Аналитические трудности в конкретных задачах, конечно, были велики, но опыт, накопленный в более разработанных областях, показал, что можно получать решения, которые удовлетворяли бы технику полнотой и точностью, сочетая экспериментальные исследования с применением новых математических методов и использованием новейшей вычислительной аппаратуры.

Добавим к сказанному, что значение и роль вариационных принципов в механике (и теоретической физике вообще) были освещены с новой точки зрения благодаря работам, относящимся к первым десятилетиям XX в. (Д. Гильберт, Э. Нетер), что принципиально важные вопросы были подняты в такой области, как теория трения (Пенлеве), что к началу 20-х годов опять-таки под влиянием технических запросов резко повышается интерес к теории устойчивости (прежде всего к методам А.М. Ляпунова), тогда же начинается бурное развитие теории нелинейных колебаний, т. е. состояние теоретической механики примерно к 1920 г. (даже если оставить пока в стороне механику сплошных сред) не давало оснований говорить о ее застое и самоисчерпании.

Таким образом, на всех основных направлениях механики запросы техники и других наук, равно как и внутренняя логика развития исследований, ставили проблемы кардинальной важности, и там, где эти проблемы не поддавались разрешению при использовании прежних методов, можно было применить достаточно перспективные новые средства. По-видимому, пессимистические оценки перспектив классической механики вызывались тогда неизбежной в условиях беспланового капиталистического общества разобщенностью исследователей, сосредоточением теоретических изысканий в учреждениях и организациях, далеких от практических нужд техники, узостью подхода к научно-техническим проблемам.

Если обратиться к механике сплошных сред, можно увидеть подобную картину, только здесь ощутимее запросы техники, влияние эксперимента и заметнее движение вперед.

Создание летательных аппаратов тяжелее воздуха стало переломным событием в истории гидромеханики и аэродинамики. Первая мировая война дала новый мощный импульс для работ, связанных с авиацией (теория крыла самолета, теория винта и пр.), но была помехой для научного общения. После 1918 г. снова стал возможен интенсивный обмен опытом, наступила фаза критической переработки того, что было достигнуто в отдельных странах, началась и работа «в задел», поскольку пути развития авиации обозначались достаточно четко, а средств для этих работ не жалели.

Скорости самолетов были еще сравнительно малы, и при таких скоростях можно было оставаться в рамках теории несжимаемой жидкости. Широко используется модель идеальной жидкости: замечательные работы Н.Е. Жуковского (теория крыла и винта) и Л. Прандтля (теория пограничного слоя) показали, каких значительных результатов можно добиться, усложняя эту модель только в самой необходимой мере, причем поправки подсказывал эксперимент. Для объяснения сопротивления, подъемной силы, процесса вихреобразования и т. д. имелись исходные физические схемы, поддававшиеся теоретической разработке. Но уже тогда было видно, что лишь этими схемами нельзя будет обойтись, — рост скоростей в авиации и в турбинной технике подсказывал, что следует переходить к учету сжимаемости, что для уточнения расчетов надо принимать во внимание конечность размеров крыла, т. е. переходить от задач двумерных к трехмерным, и т. д. Во многих явлениях приходилось учитывать влияние турбулентности. Выявленная многозначность решений в задачах теории струй и неустойчивость постулируемой в ней «зоны застоя» не оказались препятствием для применения этой теории к изучению кавитации, что становилось технически важной задачей вследствие повышения скоростей движения лопаток турбин и лопастей винтов.

Число таких примеров легко умножить. Они показывают общую тенденцию; теоретические схемы видоизменяются сравнительно мало, эти видоизменения появляются в результате анализа экспериментального материала; применение видоизмененной схемы и теоретические выводы, сделанные на ее основе, в свою очередь контролируются с помощью экспериментов. В невиданных ранее масштабах организуются коллективная работа инженеров, механиков-экспериментаторов и механиков-теоретиков с концентрацией их усилий на технически назревших проблемах. В начале 20-х годов такими проблемами были аэродинамика самолета, турбулентность, фильтрация, а несколько позже — газовая динамика и различные схемы «неньютоновских» жидкостей. Многочисленные относящиеся к этим областям направления связаны между собой лишь общностью подхода к своим задачам, в своих частных методах они весьма отличны — специализация отдельных областей становится более заметной.

Наряду с этим проводится (преимущественно силами математиков) работа по анализу аппарата классической гидромеханики: рассматривается вопрос о существовании решений и вообще о корректности краевых задач динамики идеальной и вязкой жидкости (к началу 20-х годов в этом направлении были получены некоторые результаты, что стимулировало продолжение исследований).

Чисто теоретическими средствами удалось добиться новых успехов в некоторых задачах теории волн, что оживило развитие в этой области. Для таких собственно теоретических исследований характерно обновление математического аппарата: применение новых теорем существования из теории функций комплексного переменного, использование интегральных уравнений и т. д.

В теории упругости положение несколько иное. Здесь удельный вес чисто теоретических исследований больше, чем в гидромеханике и аэромеханике, так как в основном применяются прежние модели. К началу 20-х годов в связи с разработкой новых конструкций актуальной становится теория оболочек. Одновременно продолжается работа над решением задач, которые ставятся в соответствии с другими упрощенными схемами: для тонких стержней, для пластин и т. п. Начинает широко применяться теория функций комплексного переменного при исследовании плоской задачи теории упругости (в гидромеханике это произошло примерно на полвека раньше). Заметно повышается интерес к исследованию необратимых деформаций — явления упрочнения, пластического — состояния — все это под прямым влиянием технических запросов. И там, где начинают работать с новыми моделями, мы снова видим ту же методику последовательного применения и сочетания теоретических и экспериментальных методов, что и в исследованиях по аэродинамике и в гидродинамических исследованиях.