ПРОГРЕСС В НОВОЙ НАУКЕ

We use cookies. Read the Privacy and Cookie Policy

ПРОГРЕСС В НОВОЙ НАУКЕ

Главным конкурентом Марии и Пьера, который сделал наиболее значительные открытия в области радиоактивности, был молодой новозеландский ученый Эрнест Резерфорд. Как и сама Мария, Резерфорд был аутсайдером, воспитанным вне элитной британской системы образования. Но в отличие от Французской академии, английский истеблишмент быстро признал исключительные достоинства молодого Эрнеста. Резерфорд приехал в Кембридж в 1895 году после получения двухлетнего гранта, который Ее Величество предоставила самому выдающемуся подданному заморских регионов Британской империи, чтобы он писал свою докторскую диссертацию в метрополии. Итак, Резерфорд должен был работать с Джозефом Джоном Томсоном, директором Кавендишской лаборатории, который недавно открыл катодные лучи, выявив, что атомы не являются неделимыми.

В качестве продолжения трудов Томсона изначальной целью диссертации Эрнеста Резерфорда было изучение проводимости газов, вызванной ультрафиолетовыми и рентгеновскими лучами, но затем он включил радиоактивность в число своих исследований. Вскоре изучение последней темы превратилось в основную задачу Резерфорда, так что молодой Эрнест стал одним из немногих ученых, которые исследовали казавшиеся бесполезными лучи Беккереля до открытия полония и радия. В январе 1899 года ученый опубликовал обширную статью об их природе, в которой сделал вывод (как это приведено в работе Пьера Радваньи о чете Кюри), что «излучение урана сложное и образовано по крайней мере двумя различными типами: одно легко поглощается, назовем его a, a другое имеет большую проникающую способность, назовем его ?».

Действие магнитного поля, представленного серыми прямоугольниками с символами + и -, на излучения ?, ? и ?. 

В то время Гизель в Германии, Майер и фон Швейдлер в Вене и Пьер Кюри в Париже исследовали действие магнитных полей на урановые лучи. Они выяснили, что оба типа излучения отклоняются магнитными полями, но в то время как менее проникающее излучение, которое Резерфорд назвал а, мало отклоняется этими полями, P-излучение отклоняется легко, как показано на рисунке на странице 76. В апреле 1900 года французский ученый Поль Виллар обнаружил другие лучи, с еще большей проникающей способностью, которые он назвал у, очень похожие на рентгеновские, но с большей энергией. Так в начале XX века были правильно определены типы радиации.

Хотя ни супруги Кюри, ни Резерфорд не могли тогда представить этого, определенный путь к пониманию радиоактивности уже начался, и они стояли во главе этого процесса. Пьер и Резерфорд наиболее активно выдвигали гипотезы, которые могли объяснить это явление. Они оба были блестящими учеными, но их жизненные обстоятельства отличались. Пьеру было 40 лет, и его здоровье начинало ухудшаться из-за длительной работы с радиоактивными веществами без защиты. Кроме того, он уже 20 лет боролся за то, чтобы пробиться в научный мир Франции, который не признавал его неоспоримых достоинств и не предоставлял организационной и экономической поддержки. Резерфорд, наоборот, работал в одной из лучших лабораторий по изучению структуры атома, в Кавендише в Кембридже, и, написав диссертацию, получил кафедру в Университете Макгилла, в Монреале, Канада. Там в его распоряжении была хорошо оборудованная лаборатория, хотя у него не было единственного (чего у Марии и Пьера было в избытке) — источников радия. Резерфорду было 27 лет, он недавно женился и пребывал в расцвете сил.

Резерфорд нашел ключ, который позволял понять всю неразбериху радиоактивности. А творческий, талантливый и мечтательный Пьер не только не нашел решения, но и настойчиво не признавал правоту Резерфорда в течение нескольких лет. Мария, в какой-то степени в память о Пьере, поступала так же, подавив в себе любознательность и свободный от предрассудков образ мыслей, которые так помогли ей в начале карьеры и благодаря которым она открыла дверь в новую область исследования. Так что английская команда с Резерфордом-капитаном, о котором еще долгие годы его изысканные коллеги из метрополии вспоминали с восхищением (в том числе и за то, что в его английском совсем не был слышен новозеландский акцент), выиграла матч с большим отрывом в счете.

* * *

БАРОН НЕЛЬСОН И ЕГО ПОСЛЕДОВАТЕЛИ

Когда король Георг V присвоил Эрнесту Резерфорду (1871–1937) дворянский титул (барон Нельсон) и назвал его самым блестящим ученым, которого дали колонии, тот уже совершил часть самых важных открытий в области радиоактивности: определил природу радиоактивных процессов, разработал прибор для их количественной оценки, определил радиоактивные ряды и на их основе придумал процесс определения возраста Земли, открыл существование ядра в центре атома, произвел первое превращение одного атома в другой… А открытия, которые он не совершил, сделали его ученики на подготовленной им базе. Тот, кого многие определили как «самого великого экспериментатора после Фарадея», был также отличным учителем гениев, поскольку у него была необычная способность привлекать блестящих и творческих людей, давать им пространство и стимул, которые были нужны, чтобы каждый из них выдал лучшее, что мог. При этом во многих случаях речь шла о крайне сложных личностях, таких как химик Содди со своими странными экономическими теориями; избалованный Мозли, блестящая карьера которого была прервана Первой мировой войной; мрачный Чедвик, страдавший от публичных выступлений; саркастичный Болтвуд, открытый враг Марии Кюри, который в итоге покончил жизнь самоубийством, но до этого определил возраст Земли; молодой немец с поразительной работоспособностью Ханс Гейгер, когда он еще не проявлял своих нацистских наклонностей; датчанин Нильс Бор, предложивший в диссертации модель атома, на которой основывается вся химия; немцы Фаянс и Ган; англичане Кокрофт, Уолтон и Эплтон, построившие первый ускоритель частиц… Со всеми ними Резерфорд поддерживал отличные отношения, полные привязанности и уважения к ученикам со стороны преподавателя, которого они ласково называли Крокодилом.

Эрнест Резерфорд (справа) и Ханс Гейгер в то время, когда они разрабатывали счетчик, который получил имя последнего.

РЕАКЦИИ РАДИОАКТИВНОГО РАСПАДА

Существует три главных типа спонтанного радиоактивного распада. Первые два были предложены Резерфордом в 1899 году, когда он закончил диссертацию в Кембридже; третий — Вилларом, в Париже, через год.

1. ?-лучи. Они образованы относительно тяжелыми частицами (состоят из двух нейтронов и двух протонов, то есть это ядра гелия), заряженными положительно. Они отклоняются электрическими и магнитными полями и сильно ионизированы, что делает их менее проникающими.

Схема основных реакций радиоактивного распада, на которой показано, как изменяется атомный номер, Z, и массовое число, А (то, что позже описали Содди и Фаянс).

2. ?, ?-лучи. Этот тип распада имеет место, когда нейтрон из ядра трансформируется в протон, испуская электрон. Они отклоняются магнитными полями, и их ионизирующая способность не так высока, как у ?-частиц, что делает их более проникающими. Менее распространенный тип ?-радиоактивности — ?+, при котором протон трансформируется в нейтрон, испуская позитрон; из-за своего характера он распадается сразу после реакции с электроном окружающей материи, что порождаету-лучи в противоположном направлении (на этом основана позитронно-эмиссионная томография).

3. ?-лучи. Это электромагнитные волны, испускаемые нестабильными ядрами. Это самое проникающее излучение, которое останавливается только толстыми слоями свинца или бетона.

Проникающая способность лучей ?, ?, ?.