2 ИСКРИВЛЕНИЕ ПРОСТРАНСТВА И ВРЕМЕНИ

2

ИСКРИВЛЕНИЕ ПРОСТРАНСТВА И ВРЕМЕНИ

глава, в которой Герман Минковский объединяет пространство и время, а Эйнштейн их искривляет

Абсолютное пространство-время Минковского

Представление о пространстве и времени, которое я хочу раскрыть перед вами, уходит корнями в экспериментальную физику, и в этом его сила. Да, оно революционно. Отныне пространство и время по отдельности отступают на второй план, и лишь их единый континуум будет рассматриваться как независимая реальность.

Этими словами Герман Минковский представил в сентябре 1908 г. новое открытие, касающееся природы пространства и времени.

Эйнштейн показал, что пространство и время «относительны». Размеры предметов и течение времени отличаются, если рассматривать их из различных систем отсчета. Мое время отличается от вашего, если я движусь относительно вас, мое пространство также отличается от вашего. Мое время — это смесь вашего времени и вашего пространства; мое пространство — это смесь вашего пространства и вашего времени.

Основываясь на работе Эйнштейна, Минковский пришел к выводу, что Вселенная представляет собой четырехмерную пространственно-временную структуру, и что эта структура является абсолютной, а не относительной, поскольку она одинаково выглядит во всех системах отсчета (правда, не совсем ясно, как «взглянуть» на нее). Лучше сказать, что она существует независимо от систем отсчета.

Идею, лежащую в основе открытия Минковского, хорошо иллюстрирует притча, позаимствованная мной из книги Тейлора и Уилера (1992 г.).

* * *

Давным-давно на острове Мледина посреди Восточного моря жил народ, у которого были очень странные традиции и табу. Каждый год в июне, когда наступал самый долгий день в году, все мужчины острова садились на громадный парусник и отправлялись на далекий священный остров Серона, где жила огромная ученая жаба. Всю ночь, как зачарованные, слушали они ее удивительные рассказы о звездах и галактиках, о пульсарах и квазарах. На следующий день мужчины возвращались на Мледину, преисполненные вдохновения, которое поддерживало их в течение всего следующего года.

И каждый год в декабре, когда начиналась самая долгая ночь, на священный остров Серона отправлялись женщины Мл едины. И весь следующий день слушали они волшебную жабу, после чего возвращались домой и целый год жили под впечатлением ее рассказов.

Строжайшее табу запрещало женщинам Мледины говорить с кем-либо из мужчин о своем путешествии на Серону и о рассказах ученой жабы. Такое же табу было наложено на мужчин. Никто из них не имел права посвящать женщин в детали своего ежегодного плавания.

Летом 1905 г. радикально настроенный молодой человек по имени Альберт, который не признавал табу своих соплеменников, нашел и показал всем жителям Мледины, мужчинам и женщинам, две священные карты. По одной из них жрица острова направляла корабль во время женского плавания зимой, другую использовал священник, руководивший мужским походом летом. Какой позор испытали мужчины, когда их священная карта была выставлена на обозрение, какой стыд почувствовали женщины! Но еще больше были поражены они все, когда оказалось, что карты разные! Согласно картам женщины должны были следовать 210 миль на восток, затем 100 миль на север, в то время как мужчинам надлежало в восточном направлении пройти лишь 164,5 мили и затем ровно столько же в северном. Как могло быть такое? Ведь было известно, что и мужчины, и женщины должны получать вдохновение от одной и той же священной жабы, которая всегда находится на одном и том же острове Серона!

Большинство жителей Мледины вздохнули с облегчением, решив, что карты поддельные. Но один старый мудрец по имени Герман не согласился с этим. Три года искал он разгадку и, наконец, осенью 1908 г. понял причину различия карт. Дело было в том, что мужчины пользовались магнитным компасом, а женщины ориентировались по звездам (рис. 2.1). Мужчины считали направлением на север направление на северный магнитный полюс, а женщины — направление на точку, вокруг которой вращаются звезды (вследствие вращения земли вокруг своей оси), т. е. на географический север. Различие между этими двумя направлениями составляет 20 градусов. Когда мужчины, по их мнению, плыли на север, они на самом деле плыли на северо-восток. С точки зрения женщин, они двигались на 80 процентов на север и на 20 процентов на восток. В этом смысле «мужской» север — это смесь «женского» севера и востока, аналогично, «женский» север — это смесь «мужского» севера и запада.

2.1. Две карты пути от Мледины к Сероне, наложенные одна на другую и подписанные Германом с указанными направлениями на магнитный север, географический север и абсолютным расстоянием между островами

Эта разгадка привела Германа к открытию формулы Пифагора: если у прямоугольного треугольника длины катетов возвести в квадрат, затем сложить и извлечь из суммы квадратный корень, получится длина гипотенузы.

В нашем случае гипотенуза — это прямая линия, соединяющая Мледину и Серону. Абсолютное расстояние (по прямой) между ними ?(2102 + 1002) = 232,6 мили, если считать по карте, которой пользовались женщины (на ней катеты треугольника направлены на географический север и географический восток).

Хотя на карте, которая была у мужчин, катеты треугольника направлены на магнитный север и магнитный восток, абсолютное расстояние между островами получается таким же: ?(164,52+ 164,52) = 232,6 мили. Расстояния, которые надо проплыть на север и на восток, «относительны»: они зависят от того, как ориентированна карта. Но из любой пары относительных расстояний можно вычислить одно и то же абсолютное расстояние, которое соответствует кратчайшему расстоянию между островами.

История умалчивает о том, как народ Мледины, с его традициями и обычаями, отнесся к этому замечательному открытию.

* * *

Открытие Германа Минковского аналогично тому, которое сделал Герман с острова Мледина: предположим, что вы движетесь относительно меня (например, в вашей сверхбыстрой гоночной машине). Тогда:

• Так же, как магнитный север есть смесь географического севера и географического востока, мое время есть смесь вашего времени и вашего пространства.

• Так же, как магнитный восток есть смесь географического востока и географического юга, мое пространство есть смесь вашего пространства и вашего времени.

• Так же, как использование магнитных севера и востока или географических севера и востока — это просто выбор способа проведения измерений на одной и той же двумерной поверхности — поверхности Земли, выбор моих пространства и времени или ваших — это выбор способа проведения измерений на одной и той же четырехмерной «поверхности» или структуре, которую Минковский назвал пространство-время.

Так же, как существует абсолютное расстояние, соответствующее кратчайшему пути от Мледины к Сероне на поверхности Земли, которое можно рассчитать по теореме Пифагора, используя как магнитную, так и географическую систему координат, между любыми двумя событиями в пространстве-времени существует абсолютный интервал, который можно вычислить, используя аналог формулы Пифагора для расстояний и времени, измеренных либо в моей системе отсчета, либо в вашей.

Именно аналог формулы Пифагора (я буду называть его формулой Минковского) привел Германа Минковского к его открытию абсолютного пространства-времени. Особенности этой формулы не существенны для того, о чем будет говориться далее, и мы не будем останавливаться на них (любознательные читатели, тем не менее, могут обратить внимание на Врезку 2.1). Главное то, что события в пространстве-времени аналогичны точкам в пространстве, и существует абсолютный интервал между любыми двумя событиями в пространстве-времени полностью аналогичный прямой линии между любыми двумя точками на плоском листе бумаги.

Врезка 2.1

Формула Минковского

Вы проноситесь мимо меня в мощной спортивной машине, длина которой 1 километр, со скоростью 162000 километров в секунду (54 процента от скорости света); вспомните рис. 1.3. Движение вашей машины изображено на следующих пространственно-временных диаграммах. Диаграмма а представляет вашу точку зрения, а б — мою. В тот момент, когда вы проезжаете мимо меня, ваша машина «стреляет» выхлопной трубой, из которой раздается хлопок и вылетает облако дыма; это событие обозначено буквой В на диаграммах. Двумя микросекундами (миллионными частями секунды) позднее (с вашей точки зрения) взрывается петарда на капоте вашей машины; это событие обозначено буквой X.

Поскольку пространство и время относительны (ваше пространство — это смесь моего пространства и времени), интервал времени между «выстрелом» (событие В) и взрывом петарды (событие X), измеренный вами, будет отличаться от того, который получится у меня. Между этими событиями прошло либо 2,0 микросекунды вашего времени, либо 4,51 микросекунды моего. Аналогично, у нас будут разночтения относительно того, на каком расстоянии друг от друга эти события произошли. Оказывается, что в вашем пространстве между ними ровно 1 километр, а в моем — 1,57 километра. Несмотря на эти расхождения, и у вас и у меня получится, что «абсолютный интервал» между этими событиями (расстояние в пространстве-времени) равен 0,8 км (аналогично тому, как расстояние по прямой между Млединой и Сероной оказалось одинаковым по мужской и по женской карте).

Для вычисления абсолютных интервалов можно воспользоваться формулой Минковского: сначала надо перевести временные интервалы из секунд в километры, умножив их на скорость света (299792 километров в секунду); округленные величины — 0,6 км вашего времени или 1,35 км моего — приведены на диаграмме. Затем следует возвести расстояния и времена в квадрат, вычесть из квадрата расстояния квадрат временного интервала и извлечь из результата квадратный корень (это похоже на применение теоремы Пифагора для вычисления расстояния между островами, с той разницей, что в ней квадраты складываются).

Как видно на диаграммах, несмотря на то, что расстояния и временные интервалы между В и X у нас с вами разные, абсолютные интервалы, полученные вами и мной, совпадают (0,8 км).

Знак «минус» в формуле Минковского (вместо «плюса» в формуле Пифагора) является отражением глубокого физического отличия временной координаты от координат пространственных, которое я не буду сейчас объяснять, чтобы не запутать вас. Желающие могут прочесть об этом более подробно в книге Тейлора и Уилера (1992 г.).

Универсальность этого интервала (т. е. его величина не зависит от того, какая система отсчета использована для его вычисления) показывает, что пространство-время является абсолютной реальностью; это четырехмерная структура, свойства которой не зависят от чьего-либо движения.

Как мы увидим в дальнейшем, гравитация может порождать кривизну (изгибы) этой абсолютной пространственно-временной структуры, и черные дыры, белые дыры, гравитационные волны и сингулярности состоят целиком и исключительно из этой структуры; все они суть различные виды искривлений пространства-времени.

Может показаться странным, что мы не воспринимаем пространство-время как единую, абсолютную структуру в нашей повседневной жизни. Это происходит из-за того, что мы живем в мире, где все движется медленно — и гоночные машины, и самолеты, и даже современные ракеты имеют очень малые скорости по сравнению со скоростью света. В результате пространство и время кажутся нам совершенно отдельными сущностями, мы не видим расхождений в расстояниях и временах, измеренных разными наблюдателями и, как следствие, не обращаем внимания на то, что пространство и время относительны и лишь четырехмерная пространственно-временная структура является абсолютной.

Как вы можете вспомнить, именно Минковский был тем самым преподавателем математики, который называл Эйнштейна в его студенческие годы лентяем. В 1902 г. Минковский (русский по происхождению) оставил ЕТН и перебрался из Цюриха в Геттинген (Германия), где ему предложили более привлекательную профессуру (наука тогда была такой же интернациональной, как и сейчас). В Геттингене Минковский познакомился со статьей Эйнштейна, которая произвела на него огромное впечатление. Именно она подтолкнула его к открытию в 1908 г. абсолютного четырехмерного пространства-времени.

На Эйнштейна открытие Минковского впечатления не произвело. Минковский просто переписал законы специальной теории относительности на новом, более математическом языке. Эйнштейн вообще считал, что математики часто затуманивают физические идеи, лежащие в основе законов. В то время как Минковский всячески подчеркивал элегантность его пространственно-временного представления, Эйнштейн шутил, что Геттингенские математики описывают теорию относительности на таком сложном языке, что физикам ее не понять.

Природа, как оказалось, сама решила подшутить над Эйнштейном. В 1912 г., после четырех лет поисков, он понял, что именно пространство-время Минковского необходимо для того, чтобы включить гравитацию в теорию относительности. К сожалению, сам Минковский не узнал об этом: он умер в 1909 г. от аппендицита в возрасте 45 лет.

Я вернусь к абсолютному пространству-времени Минковского позднее в этой главе. Но вначале давайте проследим, какие шаги предпринимал Эйнштейн, пытаясь объединить ньютоновские законы тяготения и специальную теорию относительности, до того, как он воздал должное открытию Минковского.

Закон тяготения Ньютона и попытки Эйнштейна связать его с теорией относительности

Ньютон рассматривал гравитацию как силу притяжения, которая возникает между любыми двумя объектами во Вселенной. Чем больше эти объекты и чем ближе они друг к другу, тем сильнее притяжение. Если быть точнее, сила притяжения пропорциональна произведению масс объектов и обратно пропорциональна квадрату расстояния между ними.

Появление этого закона стало настоящим прорывом в науке. В сочетании с ньютоновскими законами движения он объяснял орбиты, по которым планеты движутся вокруг Солнца, а спутники вокруг планет, причину возникновения океанских приливов и отливов, давал ответ на вопрос, почему все предметы падают на землю. Этот закон дал возможность Ньютону и его соотечественникам определить массу Земли и Солнца[54].

В течение двух столетий, разделявших Ньютона и Эйнштейна, точность астрономических измерений повысилась многократно, что позволило подвергнуть теорию тяготения Ньютона еще более строгим испытаниям. Иногда результаты таких измерений казались противоречащими законам Ньютона, но затем неизбежно оказывалось, что либо сами измерения, либо их интерпретация ошибочны. Законы Ньютона одерживали победу вновь и вновь. Например, когда выяснилось, что движение планеты Уран (открытой в 1781 г.) противоречит предсказаниям ньютоновского закона тяготения, возникло подозрение, что это результат воздействия на Уран другой, еще не открытой планеты. Вычисления, сделанные У.ЖЛеверье и основанные исключительно на законах Ньютона и наблюдениях за движением Урана, позволили предсказать, в какой точке небесной сферы эта планета должна находиться. В 1846 г. И.Г. Галле обнаружил эту планету, невидимую для невооруженного глаза, направив в эту точку свой телескоп. Эта новая планета, открытие которой стало триумфом ньютоновского закона гравитации, получила название Нептун.

В начале XX века оставалось лишь два очень слабых, но необъяснимых несоответствия астрономических наблюдений с законом тяготения Ньютона. Как оказалось, первое из них, касающееся особенностей орбиты Меркурия, действительно было результатом ошибочности закона тяготения Ньютона. Другое несоответствие — некоторая странность в движении Луны была просто результатом неверной интерпретации астрономических наблюдений. И, как это обычно бывает в случае чрезвычайно точных измерений, было очень сложно понять, заслуживают ли внимания результаты этих двух наблюдений, или хотя бы одно из них.

Эйнштейн чувствовал, что особенность движения Меркурия (аномальное смещение его перигелия, см. Врезку 2.2) — это реальность, а особенности движения Луны — нет. Но даже подозрение, что противоречие между наблюдениями и законом Ньютона действительно имеет место, было для Эйнштейна куда менее интересным и значимым, чем то, что этот закон нарушал недавно сформулированный им (Эйнштейном) принцип относительности («метапринцип», согласно которому все законы физики должны быть одинаковы во всех инерциальных системах отсчета). Поскольку Эйнштейн твердо верил в свой принцип относительности, это означало для него, что закон гравитации Ньютона нуждается в изменении[55].

Врезка 2.2

Смещение перигелия Меркурия

Согласно Кеплеру, орбита Меркурия должна представлять собой эллипс, в одном из фокусов которого находится Солнце (левая диаграмма, на которой эксцентриситет орбиты показан в увеличенном виде). Однако в конце XIX века астрономы обнаружили, что орбита Меркурия не совсем эллиптична. После каждого оборота Меркурий оказывался сдвинутым относительно той точки, где он был во время предыдущего витка. Этот сдвиг можно описывать, используя величину смещения ближайшей к Солнцу точки на орбите Меркурия за один оборот (смещение его перигелия). Астрономы измерили эту величину, и она оказалась равна 1,38 угловой секунды.

Вычисления с помощью законов Ньютона предсказывали смещение величиной 1,28 угловой секунды: оно было результатом притяжения Юпитера и других планет. Оставалась необъяснимой 0,1 угловой секунды — аномальный сдвиг перигелия Меркурия. Астрономы утверждали, что погрешность их измерений не превышает 0,01 угловой секунды, однако, если принять во внимание, как малы величины, о которых идет речь (0,01 угловой секунды — это угол, под которым человеческий волос виден с расстояния в 2 километра), легко понять, почему многие физики того времени относились к этим утверждениям с недоверием, и предполагали, что, в конце концов, законы Ньютона все равно окажутся верны.

Рассуждения Эйнштейна были просты: согласно Ньютону, сила гравитационного притяжения зависит от расстояния между притягивающимися объектами (например, Солнцем и Меркурием), но, согласно теории относительности, это расстояние различно в различных системах отсчета. Так, теория относительности Эйнштейна предсказывала, что расстояние между Солнцем и Меркурием будет отличаться примерно на одну миллиардную часть, если измерять его с поверхности Солнца или с поверхности Меркурия соответственно. Если обе системы отсчета, связанная с Солнцем и связанная с Меркурием, одинаково хороши с точки зрения законов физики, какая же из них должна быть использована при определении того расстояния, которое входит в формулу Ньютона? Какую бы из них мы не выбрали, принцип относительности будет нарушен! Это противоречие убедило Эйнштейна в том, что закон тяготения Ньютона неточен.

Дерзость Эйнштейна была беспримерной. Отвергнув ньютоновские понятия об абсолютном пространстве и времени, при том, что для этого практически не было экспериментальных предпосылок, он собирался теперь отказаться от закона тяготения Ньютона, столь успешно применяемого, хотя экспериментальных свидетельств его некорректности бьшо еще меньше! На самом деле, Эйнштейн руководствовался не результатами опытов, а собственным, глубочайшим интуитивным видением того, какими должны быть физические законы.

Эйнштейн начал поиски нового закона тяготения в 1907 г. Его первые шаги были связаны с работой над обзорной статьей о его специальной теории относительности и ее следствиях. Хотя в своем патентом бюро он числился всего лишь как «технический эксперт второго класса» (недавно повышенный с третьего), он уже был настолько признан среди ведущих физиков мира, что его пригласили написать такой обзор для ежегодного выпуска Jahrbuch der Radioaktivitat und Electronik. В процессе работы над обзором Эйнштейн открыл очень плодотворный метод научных исследований: оказалось, что необходимость изложить предмет в последовательной, законченной, «педагогической» форме заставляет автора по-новому взглянуть на него. Она заостряет внимание на всех «белых пятнах» и заставляет заполнять их.

В данном случае гравитация была огромным белым пятном; специальная теория относительности с ее инерциальными системами отсчета, на которые не действовало тяготение, гравитацию попросту игнорировала. Поэтому, работая над обзором, Эйнштейн все время искал возможность включить гравитацию в теорию относительности. Как это часто бывает с людьми, увлеченными какой-либо проблемой, даже тогда, когда он не думал непосредственно об этой проблеме, она крутилась у него в подсознании. Озарение пришло ноябрьским днем 1907 г. Эйнштейн позднее писал: «Я сидел на стуле в патентном офисе в Берне, когда внезапная мысль пронзила меня — если человек находится в свободном падении, он не чувствует свой собственный вес!»

Сейчас такая мысль может прийти в голову и вам, и мне, но вряд ли мы с вами сделаем из нее далеко идущие выводы. Но Эйнштейн был не таким, как все. Каждую идею он доводил до логического завершения, выжимая из нее все до последней капли. И для него эта мысль стала шагом к совершенно новому взгляду на гравитацию. Позднее он говорил: «это была самая счастливая мысль в моей жизни».

Рассуждения, немедленно последовавшие за этой мыслью, были включены Эйнштейном в обзор. Если вы свободно падаете (например, спрыгнув с обрыва), вы не только не будете чувствовать свой собственный вес, вам будет казаться, что возле вас гравитация вообще исчезла. Например, если вы выпустите из рук несколько камешков во время своего падения, эти камешки будут продолжать падать рядом с вами. Глядя только на эти камешки, вы не сможете отличить, падаете ли вы вместе с ними на Землю или находитесь в состоянии покоя вдали от Земли и других притягивающих тел. В самом деле, понял Эйнштейн, в вашем непосредственном окружении гравитация оказывается столь несущественной, практически не обнаружимой, что все законы физики в малой системе отсчета (лаборатории), которая падает вместе с вами, должны быть такими же, как если бы вы двигались свободно во вселенной без гравитации. Другими словами, ваша малая, свободно падающая система отсчета «эквивалентна» инерциальной системе отсчета в пространстве без гравитации, и все законы физики в этих системах будут одинаковыми; для них будет полностью справедлива теория относительности (позднее мы узнаем, почему свободно падающая система отсчета должна быть малой, а слово «малая» означает, что ее размеры много меньше, чем размеры Земли или, в общем случае, много меньше расстояний, на которых направление и величина гравитационных сил существенно изменяются).

В качестве примера эквивалентности между инерциальной системой отсчета в пространстве без гравитации и вашей малой свободно падающей системой рассмотрим закон специальной теории относительности, который описывает движение свободно движущегося предмета (пусть это будет пушечное ядро) во вселенной без гравитации. В любой инерциальной системе отсчета в этой идеализированной вселенной ядро должно двигаться по прямой линии с постоянной скоростью. Сравним это с движением ядра в нашей реальной, наделенной гравитацией, Вселенной: если ядро вылетело из пушки, стоящей на травянистом лугу, то с точки зрения собаки, сидящей на траве, оно опишет дугу и упадет обратно на Землю (см. рис. 2.2). Оно будет двигаться по параболе (сплошная линия) в системе отсчета этой собаки. Теперь давайте рассмотрим движение ядра в малой, свободно падающей системе отсчета. Проще всего это будет сделать, если луг находится у края обрыва. Тогда вы сможете спрыгнуть с обрыва в тот момент, когда пушка выстрелит, и наблюдать за ядром в процессе своего падения.

Для того чтобы изобразить ваши наблюдения, представьте, что вы держите перед собой оконную раму с переплетом из двенадцати частей, и что вы смотрите на ядро через нее (центральная часть на рис. 2.2). Последовательность ваших наблюдений представлена на рисунках, расположенных по часовой стрелке (рис. 2.2 а — д). Глядя на нее, не обращайте внимания на собаку, пушку, дерево и обрыв: сосредоточьтесь на раме и ядре. Вы увидите, что по отношению к раме ядро движется по прямой с постоянной скоростью.

Таким образом, в системе отсчета собаки ядро подчиняется законам Ньютона: оно движется по параболе. В вашей малой свободно падающей системе отсчета оно подчиняется законам специальной теории относительности: оно движется вдоль прямой линии с постоянной скоростью. Эйнштейн назвал это принципом эквивалентности.

В любой малой свободно падающей системе отсчета где-либо в нашей реальной Вселенной, где есть гравитация, законы физики должны быть такими же, какими они являются в инерциальной системе отсчета в идеализированной вселенной без гравитации.

2.2. В центре: Вы прыгаете с обрыва, держа перед собой оконную раму с переплетом из двенадцати частей. По кругу, начиная сверху: то, что вы увидите после выстрела пушки. Относительно падающей рамы траектория ядра — это прямая линия (пунктир); относительно собаки — это парабола (сплошная линия)

Этот принцип утверждает, что при наличии гравитации малая свободно падающая система отсчета эквивалентна инерциальной системе отсчета в отсутствие гравитации. Эйнштейн понял, что этот принцип имеет чрезвычайно важное следствие: оно означает, что, если мы просто будем называть «инерциальными» не только инерциальные, но и все малые свободно падающие системы отсчета в нашей реальной, гравитирующей Вселенной (в частности, малую лабораторию, которая падает вместе с вами с обрыва), то все, что специальная теория относительности говорит об инерциальных системах отсчета в идеализированной вселенной, автоматически станет справедливо и для нашей реальной Вселенной. Самое главное, будет выполняться принцип относительности: все малые свободно падающие системы отсчета в нашей реальной Вселенной, где есть тяготение, будут эквивалентны, ни одна из них не является предпочтительной с точки зрения законов физики. Более строго это должно звучать так: Сформулируем какой-нибудь закон физики применительно к измерениям, сделанным в маленькой инерциальной (свободно падающей) системе отсчета. Тогда для измерений в любой другой маленькой инерциальной (свободно падающей) системе отсчета он будет иметь абсолютно такой же математический и логический вид. Это должно быть справедливо везде: летит ли такая система в межгалактическом пространстве, падает ли она с обрыва на Земле или проваливается сквозь горизонт черной дыры.

Дополнив таким образом свой принцип относительности, Эйнштейн сделал первый шаг к созданию новой системы законов гравитации: первый шаг от специальной теории относительности к общей теории относительности.

Наберись терпения, мой дорогой читатель. Эта глава, возможно, самая сложная в книге. Мой рассказ уже не будет содержать столько технических подробностей в следующей главе, когда мы будем изучать черные дыры.

Всего через несколько дней после того, как принцип относительности был сформулирован, Эйнштейн использовал его для того, чтобы сделать удивительное предсказание о гравитационном замедлении времени: если наблюдатель находится вблизи массивного тела, то чем ближе он к этому телу, тем медленнее течет его время. Например, в любом доме на Земле время на первом этаже течет медленнее, чем на втором. Правда, эта разница оказывается столь малой (3х10-16, или 300 долей на миллиард миллиардов), что ее крайне сложно обнаружить. Однако (как мы увидим в следующей главе) вблизи черной дыры гравитационное замедление времени может быть колоссальным: если черная дыра имеет массу в 10 раз больше Солнца, на высоте в 1 сантиметр над ее горизонтом время будет течь в 6 миллионов раз медленнее, чем вдали от горизонта, а на самом горизонте оно вообще останавливается (неплохая возможность для путешествий во времени: если вы снизитесь до высоты в 1 сантиметр над горизонтом черной дыры, проведете там один год, а затем вернетесь на Землю, вы обнаружите, что на ней прошло 6 миллионов лет!).

Эйнштейн открыл гравитационное замедление времени путем достаточно сложных рассуждений, однако позднее он придумал простой и элегантный пример, который объясняет это замедление, кроме того, является иллюстрацией великолепной физической логики самого Эйнштейна. Этот пример представлен на Врезке 2.4, а эффект Доплера, на который там есть ссылка, объясняется на Врезке 2.3.

* * *

Начиная работать над обзорной статьей в 1907 г., Эйнштейн намеревался описать в ней теорию относительности для вселенной без гравитации. Однако в процессе работы он сделал 3 важных открытия, которые должны были помочь объединению гравитации со специальной теорией относительности: принцип эквивалентности, гравитационное замедление времени и возможность распространить принцип относительности на системы с гравитацией и, конечно, он включил их в статью. Наконец, в начале декабря, он отправил статью редактору Jahrbuch der Radioaktivit?t und Electronik и направил все свои силы на разработку полного, релятивистского описания гравитации.

24 декабря Эйнштейн писал своему другу: «В настоящее время я занимаюсь теорией относительности применительно к законам гравитации… Я надеюсь объяснить аномальный сдвиг перигелия Меркурия…. хотя пока, похоже, мне это не удается». В начале 1908 г., будучи разочарован отсутствием прогресса в этом направлении, Эйнштейн оставил его и занялся физикой атомов, молекул и их взаимодействием с излучением (физикой микромира), поскольку нерешенные проблемы в этой области в тот момент казались более интересными и разрешимыми[56].

Врезка 2.3

Эффект Доплера

Всегда, когда передатчик, излучающий волны, и приемник приближаются друг к другу, приемник будет регистрировать сдвиг частоты вверх: длина волны и период колебаний будет становиться меньше. Если же приемник и передатчик удаляются друг от друга, то частота принимаемых колебаний будет уменьшаться — длина волны и период колебаний, измеренные приемником, будут больше. Это явление называется эффектом Доплера и является общим свойством волн любой природы: звуковых волн, волн на поверхности воды, электромагнитных волн и т. д.

Применительно к звуковым волнам эффект Доплера вам хорошо знаком. Вы наверняка обращали внимание на внезапное понижение звука, когда машина скорой помощи со включенной сиреной проносилась мимо вас или когда идущий на посадку самолет пролетал у вас прямо над головой. Легко понять происхождение этого сдвига частоты, из приведенных здесь рисунков.

То, что верно для волн, справедливо и для импульсов. Если источник излучает вспышки света (или какие-то другие импульсы) с постоянной частотой (через равные промежутки времени), то приемник, к которому этот источник приближается, будет принимать эти импульсы с более высокой частотой, чем частота, с которой они излучались (промежутки станут меньше).

Врезка 2.4

Возьмем пару одинаковых часов. Одни часы положим на пол возле дырки в нем так, чтобы можно было их туда столкнуть, вторые подвесим к потолку за веревочку. Ход часов на полу будет задаваться течением времени возле пола, а ход часов, висящих на веревочке, — течением времени возле потолка.

Предположим, что висящие часы испускают очень короткий импульс света при каждом «тике» в направлении часов, лежащих на полу. Непосредственно перед тем, как висящие часы должны будут испустить свой первый импульс, перережем веревочку, чтобы они начали свободно падать. Если время между «тиками» очень мало, то к моменту второго «тика» (и испусканию второго импульса) они будут находиться почти на том же месте и их скорость будет все еще близка к нулю (рисунок а). Это означает, что часы все еще чувствуют течение времени возле потолка, которое определяет интервал времени между импульсами.

За мгновение до того, как первый импульс света достигнет пола, столкнем нижние часы в дырку. Второй импульс придет почти сразу после первого, так что эти часы незначительно сместятся за время между импульсами и будут почти неподвижны на уровне пола, поэтому они по-прежнему будут чувствовать течение времени возле пола.

При помощи такой модели Эйнштейн свел задачу сравнения того, как течет время возле потолка и возле пола, к задаче сравнения хода двух свободно падающих часов. Принцип эквивалентности позволял ему произвести такое сравнение при помощи законов специальной теории относительности.

Поскольку часы, которые были подвешены у потолка, начали свое падение раньше тех, что были на полу, их скорость всегда будет больше (см. рисунок б), т. е. часы всегда будут сближаться. Это значит, что часы у пола будут «видеть» световые импульсы, посланные часами у потолка, с меньшим интервалом между ними из-за эффекта Доплера (Врезка 2.3). Поскольку время между ними задавалось «тиками» часов, находящихся у потолка, это означает, что время около пола течет медленнее, чем около потолка; иными словами, гравитация замедляет течение времени.

В течение 1908 г. (игнорируя работы Минковского, в которых тот объединил пространство и время), а также последующих трех лет Эйнштейн занимался физикой микромира. В это время он оставляет патентное бюро в Берне и становится сначала доцентом в университете Цюриха, а затем полным профессором в Праге — культурном центре Австро-Венгерской империи.

Жизнь профессора оказалась нелегкой. Эйнштейна раздражала необходимость регулярно читать лекции, тема которых была далека от его исследований. Ему не удавалось ни мобилизовать себя на подготовку к таким лекциям, ни сделать их интересными, хотя разделы, близкие его сердцу, он читал блестяще. С другой стороны, теперь он был полноправным членом Европейского академического сообщества. Несмотря на все трудности, его исследования в данной области продвигались чрезвычайно успешно, и впоследствии именно за их результаты он был удостоен Нобелевской премии (см. Врезку 4.1).

В середине 1911 г. интерес Эйнштейна к микрофизике стал угасать и он вновь обратился к гравитации, борьбе с которой ему предстояло посвятить все время до ноября 1915 г., когда им была сформулирована общая теория относительности.

Вначале внимание Эйнштейна было обращено на приливные гравитационные силы.

Приливные силы и кривизна пространства-времени

Представьте себе, что вы — космонавт, находитесь в открытом космосе над экватором и свободно падаете на Землю. Хотя, находясь в свободном падении, вы не будете чувствовать собственный вес, тем не менее, вы будете ощущать слабые, остаточные силы, связанные с земным притяжением. Они называются «приливными силами» и их происхождение легко понять, рассматривая гравитационное взаимодействие вначале, с точки зрения наблюдателя, находящегося на земле под вами, а затем, с вашей собственной точки зрения.

С точки зрения земного наблюдателя (рис. 2.3<я), гравитационное притяжение, действующее на различные части вашего тела, несколько отличается. Поскольку ваши ноги ближе к Земле, чем ваша голова, сила, действующая на них, больше. Получается, что вас будет растягивать вдоль туловища. Кроме того, поскольку гравитационное притяжение всегда направлено к центру Земли, а это направление немного наклонено вправо у вашей левой руки и немного влево у правой, то оказывается, что вас будет сжимать с боков.

С вашей собственной точки зрения (рис. 2.3б), основной силы, направленной вниз, вообще нет, ведь вы находитесь в невесомости. Однако силы, которые растягивают ваше туловище вдоль и сжимают его с боков, остаются. Они вызываются отличием гравитационного поля там, где находятся разные части вашего тела, от гравитационного поля в его центре, и не могут быть устранены свободным падением.

Силы, вызывающие продольное растяжение и поперечное сжатие, которые вы будете чувствовать, называются приливными, поскольку именно такие силы вызывают океанские приливы (в этом случае Луну следует рассматривать в качестве притягивающего центра, а Землю в качестве свободно падающего на нее тела).

2.3. Во время падения к Земле приливные силы будут растягивать вас вдоль туловища и сжимать с боков

При выводе своего принципа эквивалентности Эйнштейн игнорировал приливные силы (вспомним ключевые места его утверждения: «В состоянии свободного падения вы не будете чувствовать свой собственный вес» и «вам будет казаться, во всех отношениях, что гравитация вблизи вас исчезла»), Эйнштейн оправдывал такой подход, считая, что вы (и ваша система отсчета) очень малы. Например, если представить, что вы размером с муравья или даже меньше, то части вашего тела будут находиться так близко друг к другу, что величина и направление гравитационного притяжения, действующего на них, будет практически одинаковой и, соответственно, приливные силы окажутся пренебрежимо малыми. С другой стороны, если вы колосс ростом в 5000 километров, то величина и направление земного притяжения для частей вашего тела будут очень сильно различаться, и вы почувствуете огромные растяжение и сжатие.

Такие рассуждения привели Эйнштейна к заключению, что в достаточно малой свободно падающей системе отсчета обнаружить приливные силы невозможно, поэтому такая система даже в нашей гравирующей Вселенной полностью эквивалентна инерциальной системе отсчета во вселенной без гравитации. Однако для больших систем отсчета это не верно. Поэтому в 1911 г. именно приливные силы казались Эйнштейну ключом к пониманию природы гравитации.

Таким образом, понятно, как с помощью ньютоновского закона тяготения объяснить возникновение приливных сил: они появляются из-за различия величины и направления гравитационного притяжения, действующего в разных местах. Но этот закон, в котором сила притяжения зависит от расстояния, не мог быть точным, поскольку он нарушал принцип относительности (не ясно, в какой системе отсчета должно измеряться это расстояние). Эйнштейн хотел сформулировать совершенно новый закон гравитации, такой, который был бы одновременно совместим с принципом относительности и объяснял бы возникновение приливных сил.

С середины 1911 г. до середины 1912 г. Эйнштейн пытался объяснить возникновение приливных сил, предполагая, что время «искривлено», а пространство нет. Такое весьма странное, на первый взгляд, предположение было естественным следствием эффекта гравитационного замедления времени: различие в течении времени у пола и у потолка в комнате на Земле можно назвать искривлением времени в гравитационном поле Земли. Возможно, рассуждал Эйнштейн, подобное искривление времени более сложной формы может быть причиной всех известных гравитационных эффектов, начиная от эллиптических траекторий планет и приливных сил и заканчивая аномальным сдвигом перигелия Меркурия.

Врезка 2.5

Возникновение океанских приливов

На той поверхности Земли, которая ближе к Луне, притяжение к ней сильнее, чем в центре Земли, поэтому океан там притягивается к Луне сильнее, чем Земля в целом, и в результате водная поверхность «вздувается», приближаясь к Луне. На той поверхности Земли, которая дальше от Луны, притяжение к ней слабее, чем в центре Земли, поэтому океан там притягивается к Луне слабее, соответственно, водная поверхность «вздувается», удаляясь от Луны. На левой стороне Земли сила притяжения к Луне, которая направлена к ее центру, имеет небольшую компоненту, направленную вправо, аналогично, на правую сторону Земли действует компонента лунного притяжения, направленная влево. Эти силы «выдавливают» воду из океанов. В результате из-за вращения Земли каждый день наблюдается два прилива и два отлива.

Если на вашем любимом океанском пляже приливы и отливы ведут себя несколько иначе, это может быть результатом двух следующих эффектов: во-первых, перемещение воды под действием приливных сил происходит с запаздыванием — необходимо время, чтобы вода вошла и вышла в заливы, бухты, фиорды, каналы и другие углубления в береговой линии.

Во-вторых, существуют приливные силы, создаваемые Солнцем, которые примерно в два раза слабее лунных и по-другому направлены, поскольку (обычно) Луна и Солнце находятся в разных частях небосвода.

Приливы и отливы, наблюдаемые на Земле, являются результатом комбинации приливных сил, действующих со стороны Луны и со стороны Солнца.

Однако после двенадцати месяцев работы Эйнштейн вынужден был отказаться от этой интересной идеи. Причины были вескими: время относительно, ваше время — это смесь моего времени и моего пространства (если мы движемся друг относительно друга), поэтому, даже если у вас время искривлено, а пространство плоское, у меня будут искривлены и пространство, и время. То же самое можно сказать про все остальные движущиеся системы отсчета. Получается, что ваша, и только ваша система отсчета обладает плоским пространством, соответственно, с точки зрения физических законов, она принципиально отличается от всех остальных систем, а это противоречит принципу относительности.

Тем не менее, Эйнштейн чувствовал, что искривление времени — это ключ к решению проблемы, в таком случае, рассуждал он, предположим, что и время, и пространство искривлены во всех системах отсчета. Может быть, такая комбинированная кривизна объяснит приливные силы?

2.4. Две прямые, параллельные изначально, никогда не пересекутся на плоской поверхности, такой, как лист бумаги, нарисованный слева, но могут пересечься на искривленной поверхности, так, как это происходит с меридианами на глобусе (рисунок справа)

Однако такой подход поначалу показался обескураживающим. Во Вселенной может быть бесчисленное множество систем отсчета, движущихся по-разному, и следовательно, надо рассматривать бесконечное количество искривленных времен и пространств! К счастью, Эйнштейн понял, что Герман Минковский дал мощный инструмент, позволяющий существенно упростить ситуацию: «Таким образом, пространство само по себе и время само по себе уходят в тень, и лишь их некоторая комбинация остается независимой реальностью». Существует лишь одно-единственное, уникальное четырехмерное пространство-время в нашей Вселенной; искривления различных пространств и времен должны быть представлены как кривизна единственного, абсолютного пространства-времени Минковского.

Эйнштейн пришел к такому заключению летом 1912 г. После четырех лет насмешек над идеей Минковского он вынужден был принять его абсолютное пространство-время и искривить его!

* * *

Что такое кривизна пространства-времени? Для простоты, рассмотрим сначала искривленную двумерную поверхность. На рис. 2.4 показаны две поверхности: плоская и искривленная. На плоской поверхности (примером которой может быть обычный лист бумаги) проведены две прямые параллельные линии, начинающиеся у одной стороны. Одним из постулатов евклидовой геометрии (названной так в честь создателя — древнегреческого математика Евклида) является то, что параллельные прямые на плоскости никогда не пересекаются. С помощью этого постулата можно проверять, является ли плоской поверхность, на которой нарисованы параллельные прямые: если можно найти хотя бы одну пару изначально параллельных прямых, которые пересекаются где-либо, то данное пространство не является плоским.

В качестве примера искривленного пространства на рис. 2.4 приведено изображение глобуса. Найдем на глобусе город Кито (столицу Эквадора), он расположен на экваторе. Проведем от него прямую линию, направленную на север. Эта линия пройдет по одной и той же долготе к северному полюсу.

Почему эту линию следует считать прямой? Этому есть два различных объяснения. Во-первых, это часть большого круга, и именно вдоль таких линий прокладывают маршруты самолетов, поскольку именно в этом случае они оказываются самыми короткими. Если провести любую другую линию между Кито и северным полюсом на глобусе, она будет длиннее.

Во-вторых, эта линия прямая в смысле рассуждений, которые мы использовали ранее, обсуждая пространство-время: если рассмотреть достаточно маленький участок, через который проходит наша линия, обнаружить на нем кривизну глобуса будет практически невозможно. В пределах этого участка часть большого круга будет прямой в обычном понимании этого слова, такой же, как прямая на плоском листе бумаги. Большой круг на глобусе является прямой линией в пределах любого маленького участка поверхности на своем пути.

Математики используют термин геодезическая для обозначения линий в искривленном пространстве, которые являются прямыми с этих двух точек зрения: представляют собой кратчайший путь и становятся прямыми в обычном смысле при рассмотрении в пределах малой окрестности.

Переместимся теперь на восток от Кито на нашем глобусе на несколько сантиметров и построим новую прямую линию (часть большого круга, геодезическую), которая на экваторе будет в точности параллельна проходящей через Кито. Так же, как и первая, эта линия пройдет через северный полюс. Причиной, которая заставляет изначально параллельные прямые пересекаться, является кривизна нашего глобуса.

* * *

После того как влияние искривления двумерной поверхности на ее свойства стало нам понятно, мы можем вернуться к четырехмерному пространству-времени.