11 ЧТО ТАКОЕ РЕАЛЬНОСТЬ?
11 ЧТО ТАКОЕ РЕАЛЬНОСТЬ?
глава, в которой пространство-время искривлено по воскресеньям и плоское по понедельникам; горизонты по воскресеньям сделаны из вакуума и по понедельникам из зарядов, но воскресные эксперименты согласуются с понедельничными во всех деталях
Действительно ли пространство-время искривлено? Может быть, оно на самом деле плоское, а «кривы» часы и линейки, с помощью которых мы его измеряем (см. Врезку 11.1)? Может быть, даже самые точные часы немного отстают или спешат, а самые точные линейки сжимаются или растягиваются, когда мы переносим их от точки к точке и крутим их так и сяк? Может быть, пространство-время «кривит» от наших часов и линеек?
Да.
На рис. 11.1 приведен конкретный пример: даны измерения радиусов и окружностей вокруг невращающейся черной дыры. Слева мы видим диаграмму, показывающую искривление пространства у черной дыры. Пространство на этой диаграмме искривлено, потому что расстояния измеряются линейками, которые мы считаем заведомо точными и не меняющими свою длину, куда бы и как бы мы их ни прикладывали. Линейки показывают, что горизонт вокруг черной дыры имеет окружность длиной 100 км. Вокруг дыры проведена также окружность с вдвое большей длиной, 200 км, и расстояние от нее до горизонта измерено с помощью точной линейки; оно составляет 37 км. Если бы пространство было плоским, это радиальное расстояние было бы равно разности радиусов внешней окружности 200/2? км и горизонта 100/2? км, т. е. приблизительно 16 км. Чтобы получилось большее радиальное расстояние, 37 км, пространство должно иметь искривленную форму, в виде раструба музыкальной трубы (см. диаграмму).
Врезка 11.1
Совершенные линейки и часы
Под «совершенными часами» и «совершенными линейками» в этой книге подразумеваются часы и линейки, наиболее точные в нашем мире, совершенство которых проверяется на атомно-молекулярном уровне.
Точнее говоря, совершенные часы должны «тикать» в одном ритме с колебаниями атомов и молекул. Лучшие атомные часы в мире для этого и созданы. Поскольку колебания атомов и молекул контролируются тем, что я назвал в предыдущих главах «темпом течения времени», совершенные часы измеряют «временную» часть искривленного пространства-времени Эйнштейна.
Отметки на совершенных линейках должны иметь однородные и стандартные расстояния по сравнению с длинами волн света, излученного атомами и молекулами, например, по отношению к «длине волны 21 см», излучаемой молекулами водорода. Это равносильно тому, что если измерения длины производятся линейкой при фиксированной и стандартной температуре (скажем, ноль градусов Цельсия), то она всегда содержит одинаковое число атомов между отметками длины. Это, в свою очередь, гарантирует, что совершенные линейки измеряют пространственные длины искривленного пространства-времени Эйнштейна.
В этой главе вводится концепция «истинного» времени и «истинной» длины. Причем они не обязательно измеряются совершенными часами и совершенными линейками, т. е. это время и эта длина не обязательно основаны на атомно-молекулярных стандартах и не обязательно должны являться частью изогнутого пространства-времени Эйнштейна.
Если пространство вокруг черной дыры на самом деле плоское, а наши линейки растягиваются, нам может казаться, что искривлено пространство. Тогда истинная геометрия пространства такова, как показано в правой части рис. 11.1, а истинное расстояние от горизонта до окружности 16 км, как это следует из законов плоской геометрии Евклида. Из общей теории относительности, однако, следует, что это истинное расстояние нельзя измерить с помощью наших совершенных линеек. Возьмите линейку и приложите ее вдоль окружности вокруг черной дыры с внешней стороны от ее горизонта (черный отрезок дуги с делениями в правой части рис. 11.1). Будучи расположена по окружности, линейка измеряет истинное расстояние. Отрежьте кусок линейки длиной 37 км. Этот отрезок составляет 37 % всей длины окружности вокруг черной дыры. Теперь поверните линейку в радиальном направлении (прямая черная полоска с делениями на рис. 11.1). В соответствии с общей теорией относительности при повороте она сожмется. Если
11.1. Измерения длины в окрестности черной дыры с двух различных точек зрения. Слева: пространство-время считается искривленным, и совершенная линейка измеряет точную длину истинного пространства-времени. Справа: пространство-время считается плоским, и линейка является растяжимой. Совершенная линейка длиной 37 км, ориентированная вдоль окружности, измеряет точную длину в истинном плоском пространстве-времени. Но ориентированная по радиусу, эта линейка сжимается, причем тем сильнее, чем ближе она к черной дыре. Поэтому радиальное расстояние, измеренное с ее помощью, оказывается больше истинного (в нашем случае 37 км вместо истинных 16 км)
направить линейку по радиусу, ее истинная длина должна сжаться до 16 км и она будет доставать от горизонта точно до внешнего круга. Однако деления, которые остались на сжавшейся линейке, говорят о том, что ее длина по-прежнему 37 км. Таким образом, расстояние между горизонтом и окружностью равно 37 км. Люди подобные Эйнштейну, которые не знают, что линейка может растягиваться, и верят ее показаниям, делают вывод, что пространство искривлено. Однако те люди, которые, как я и вы, принимают растяжимость, знают, что линейка сжимается, а пространство на самом деле плоское.
Что могло заставить линейку сжаться, когда изменилась ее ориентация? Конечно, гравитация. В плоском пространстве правой части рис. 11.1 существует гравитационное поле. Оно контролирует размеры фундаментальных частиц, атомных ядер, атомов, молекул, всего на свете и заставляет их сжиматься в радиальном направлении. Сжатие велико возле черной дыры и уменьшается с удалением от нее, так как гравитационное поле, контролирующее это сжатие, генерируется черной дырой и его влияние уменьшается с расстоянием.
Гравитационное поле, влияющее на сжатие, имеет и другие следствия. Когда фотон или какая-нибудь другая частица пролетает рядом с дырой, поле действует на нее и искривляет ее траекторию. Траектория частицы изгибается вокруг черной дыры. Она становится кривой при измерениях в истинной плоской пространственно-временной геометрии черной дыры. Но люди подобные Эйнштейну, принимающие всерьез показания растяжимых линеек и часов, думают, что фотон движется по прямой линии в искривленном пространстве-времени.
Что же происходит на самом деле? Является ли пространство-время плоским, как мы думали до сих пор, или оно искривлено в действительности? Для физика подобного мне это неинтересный вопрос, потому что у него нет физических следствий. Обе точки зрения — изогнутого и плоского пространства-времени — дают совершенно одинаковые предсказания для измерений, выполненных с помощью совершенных линеек и часов, а также с помощью любых других физических приборов. Например, с обеих точек зрения радиальное расстояние между горизонтом и окружностью на рис. 11.1, измеренное совершенной линейкой, равно 37 км. Несогласие между ними заключается только в том, является ли измеренное расстояние «реальным». Но это уже вопрос не физики, а философии. Поскольку результаты всех экспериментов согласуются с обеих точек зрения, они физически эквивалентны. Какая из них сообщает нам «истинную правду», не важно с экспериментальной точки зрения. Пусть об этом спорят философы, а не физики. Более того, физики могут пользоваться попеременно обеими точками зрения (и делают это), пытаясь выводить предсказания из общей теории относительности.
* * *
Умственные процессы, которые характеризуют работу физиков-теоретиков, блестяще описал Томас Кун в своей концепции парадигмы. Кун, получивший степень доктора философии по физике в Гарвардском университете в 1949 г., стал впоследствии выдающимся историком и философом науки. Он ввел концепцию парадигмы в книге, написанной в 1962 г., Структура научных революций. Это одна из самых потрясающих книг, которые я когда-либо читал.
Парадигма — это целый набор средств, который используется сообществом ученых в процессе исследования какого-либо предмета, а также в процессе общения друг с другом при обсуждении результатов этого исследования. Искривленное пространство-время в общей теории относительности — это одна парадигма; плоское пространство-время — другая. Каждая из этих парадигм включает в себя три основных элемента: ряд физических законов, сформулированных на языке математики; ряд иллюстраций (мысленных, вербальных или на бумаге), которые описывают законы и помогают нам понимать друг друга; ряд примеров — проведенных ранее вычислений и решенных задач либо в учебниках, либо в опубликованных научных статьях, которые являются правильными и интересными с точки зрения экспертов по теории относительности и которые мы используем в качестве образца в наших последующих вычислениях.
Парадигма искривленного пространства-времени включает в себя три вида математически сформулированных законов: уравнение поля Эйнштейна, которое описывает процесс искривления пространства-времени под влиянием вещества; формулы, описывающие способ измерения длин и промежутков времени в искривленном пространстве-времени Эйнштейна с помощью совершенных линеек и часов; формулы, описывающие движение материи и полей в искривленном пространстве-времени (например, что свободно движущиеся тела перемещаются по прямым линиям), т. е. геодезические свойства этого пространства-времени. Парадигма плоского пространства-времени также включает в себя три вида законов: закон, описывающий процесс возникновения гравитационного поля под действием вещества в плоском пространстве-времени; законы, которые описывают, каким образом это поле влияет на сжатие совершенных линеек и на растяжение промежутков времени, отмеряемых совершенными часами; законы, в соответствии с которыми частицы и поля движутся в гравитационном поле этого плоского пространства-времени.
Иллюстрации в парадигме искривленного пространства-времени включают диаграммы, помещенные в этой книге (например, левая часть рис. 11.1), и вербальные описания кривизны пространства-времени вокруг черных дыр (например, «подобное торнадо завихрение пространства вокруг вращающейся черной дыры»). Иллюстрации в парадигме плоского пространства-времени включают правую часть рис. 11.1, когда происходит сжатие линейки при изменении ее ориентации вдоль окружности на ориентацию вдоль радиуса, а также вербальное описание типа «под действием гравитационного поля происходит сжатие линеек».
К примерам в парадигме искривленного пространства-времени относится решение Шварцшильда для уравнения поля Эйнштейна, описанное в большинстве учебников по теории относительности, а также расчеты Израэля, Картера и Хокинга, показавшие, что у черной дыры нет «волос». К примерам в парадигме плоского пространства-времени можно отнести известные расчеты изменения массы черной дыры или другого тела при взаимодействии с гравитационными волнами, а также результаты вычислений Клиффорда Уилла, Тибо Дамура и др., показавших, как при вращении вокруг друг друга нейтронных звезд возникают гравитационные волны (волны поля, вызывающего сжатие пространства).
Каждая часть парадигмы — законы, иллюстрации и примеры — существенна для моих мыслительных процессов в ходе исследования. Иллюстрации (мысленные или вербальные, а также те, которые можно увидеть на бумаге) служат главной путеводной нитью. Они дают мне интуитивное восприятие возможного поведения Вселенной; манипуляции ими или математическими схемами интересны с точки зрения новых озарений. Если на основании иллюстраций и зарисовок у меня возникает интересная мысль (например, «гипотеза об обруче» в главе 7), я затем пытаюсь подтвердить или опровергнуть ее тщательными математическими расчетами, основанными на строгих законах физики, лежащих в основе парадигмы. Примеры, иллюстрирующие парадигму, задают уровень точности, который требуется для получения достоверных результатов. Если точность плохая, результаты могут оказаться неверными; если точность слишком большая, расчеты могут занять неоправданно большое время. Примеры подсказывают, какие именно математические операции помогут мне добраться до цели сквозь трясину математических символов. Иллюстрации также помогают расчетам. С их помощью можно отыскать кратчайшие пути и избежать тупиковых решений. Если расчеты подтверждают или, по крайней мере, не опровергают мою идею, я довожу ее до сведения специалистов по теории относительности, пользуясь иллюстрациями и вычислениями, или других людей (например, читателей этой книги), пользуясь только вербальными иллюстрациями и рисунками в книге.
Физические законы в парадигме плоского пространства-времени можно вывести математически из законов в парадигме искривленного пространства-времени, и наоборот. Это означает, что два ряда законов являются разными математическими представлениями одного и того же физического явления, подобно тому как 0,001 и 1/1000 являются разными математическими представлениями одного и того же числа. Математические формулы, описывающие эти законы, выглядят, однако, совершенно по-разному в двух представлениях, так же как иллюстрации и примеры, сопровождающие эти два ряда законов.
Например, в парадигме искривленного пространства-времени вербальной иллюстрацией уравнения поля Эйнштейна является утверждение, что «масса рождает кривизну пространства-времени». Если перевести на язык парадигмы плоского пространства-времени, уравнение поля описывается следующей вербальной иллюстрацией: «масса рождает гравитационное поле, которое управляет сжатием линеек и растяжением промежутков времени». Хотя обе версии уравнения поля Эйнштейна математически эквивалентны, их вербальные иллюстрации отличаются очень сильно.
В исследованиях, связанных с теорией относительности, очень важно уметь владеть обеими парадигмами. Некоторые задачи проще и быстрее решаются в парадигме искривленного пространства-времени; другие — с использованием идеи о плоском пространстве-времени. Параметры черной дыры лучше всего определять, пользуясь соображениями об искривленном пространстве-времени (например, так было сделано открытие, что черная дыра не имеет «волос»); гравитационноволновые задачи лучше решать методами, характерными для плоского пространства-времени (например, проводить расчет гравитационных волн, возникающих в двойной системе нейтронных звезд при их вращении). Опытные физики-теоретики постепенно начинают чувствовать, какая парадигма больше всего подходит к той или иной ситуации, и по мере необходимости пользуются то одной, то другой точкой зрения. По воскресеньям, думая о черных дырах, они могут считать пространство-время искривленным, а по понедельникам, думая о гравитационных волнах, плоским. Такой скачок разума можно сравнить с тем, который испытываешь, когда смотришь на картину М.К. Эшера (рис. 11.2).
Законы, лежащие в основе обеих парадигм, математически эквивалентны. Отсюда наша уверенность в том, что при анализе той или иной физической ситуации мы получим одинаковые предсказания для результатов экспериментов в рамках обеих парадигм. Поэтому мы вольны пользоваться той или иной парадигмой в зависимости от ситуации.
Такая свобода дает некоторую власть. Физиков не всегда удовлетворяет концепция искривленного пространства-времени Эйнштейна, и в качестве дополнения к ней они развили концепцию плоского пространства-времени.
Еще одна парадигма — способ описания гравитации, предпринятый Ньютоном. В ней пространство и время считаются абсолютными, а сила гравитации распространяется мгновенно от одного тела к другому («действие на расстоянии», главы 1 и 2).
* * *
Ньютоновская парадигма гравитации, конечно, не эквивалентна эйнштейновской парадигме искривленного пространства-времени; они приводят к различным предсказаниям относительно того, какими должны быть результаты экспериментов. Томас Кун использует слова «научная революция», когда описывает интеллектуальные усилия, потребовавшиеся Эйнштейну для изобретения его парадигмы и убеждения коллег в том, что она точнее описывает гравитацию, чем
11.2. Картина М.К. Эшера. При взгляде на нее можно испытать скачок разума, если посмотреть сначала с одной точки зрения (например, с вершины водопада), а затем — с другой точки зрения (с нижнего уровня потока). Этот скачок разума подобен тому, который испытывает физик-теоретик, переключаясь с парадигмы искривленного пространства-времени на парадигму плоского пространства-времени
ньютоновская парадигма (глава 2). Изобретение физиками парадигмы плоского пространства-времени не было научной революцией в смысле определения Куна, потому что парадигмы плоского и искривленного пространства-времени дают в точности одинаковые предсказания.
Если сила гравитации слаба, предсказания ньютоновской парадигмы и эйнштейновской парадигмы искривленного пространства-времени практически идентичны. Обе эти парадигмы математически эквивалентны с большой точностью. Вот почему при исследовании гравитационного поля в Солнечной системе физики часто пользуются то ньютоновской парадигмой, то парадигмами искривленного или плоского пространства-времени, безнаказанно переходя от одной к другой, когда им заблагорассудится.[113]
* * *
Иногда новички в той или иной области более восприимчивы к новым идеям, чем маститые исследователи. Так случилось в 70-х годах прошлого века, когда студент Принстонского университета Ричард Ханни и молодой ученый «постдок» Ремо Руффини создали новую парадигму в области исследования черных дыр, введя понятие мембраны.
В 1971 г. они заметили, что горизонт черной дыры может вести себя наподобие электрически проводящей сферы. Чтобы понять эту особенность, вспомним, что положительно заряженная металлическая дробинка несет электрическое поле, которое отталкивает протоны и притягивает электроны. Электрическое поле дробинки может быть описано силовыми линиями, аналогичными линиям магнитного поля. Направление силовых линий электрического поля совпадает с направлением силы, действующей со стороны поля на протон (и противоположно силе действия на электрон), плотность силовых линий пропорциональна напряженности поля. Силовые линии электрического поля одиночной дробинки в плоском пространстве-времени направлены по радиусам наружу (рис. 11.3а). Таким образом, на протон действует сила, направленная по радиусу в направлении от дробинки. Поскольку плотность силовых линий поля уменьшается обратно пропорционально квадрату расстояния от дробинки, сила, действующая на протон, также уменьшается обратно пропорционально квадрату расстояния от него.
11.3. (а) Электрическое поле положительно заряженной, находящегося в покое изолированной металлической дробинки в плоском пространстве-времени. (6) Электрическое поле покоящейся дробинки и находящейся рядом с ним в плоском пространстве-времени проводящей металлической сферы. Электрическое поле дробинки поляризует сферу, (в) Электрическое поле дробинки, покоящейся вблизи горизонта черной дыры. Силовые линии расположены таким образом, что можно говорить о поляризации горизонта
Поднесем теперь дробинку к металлической сфере (рис. 11.3б). Поверхность металлической сферы состоит из электронов, которые могут свободно перемещаться по сфере, и положительно заряженных ионов, которые не могут перемещаться. Под действием электрического поля дробинки часть электронов сферы скапливается на ближайшей к дробинке части ее поверхности. В остальной части сферы образуется избыток ионов, другими словами, дробинка поляризует [114] сферу.
В 1971 г. Ханни и Руффини, а также независимо от них Роберт Уолд (Принстонский университет) и Джеф Коэн (Принстонский институт передовых исследований) рассчитали форму силовых линий электрического поля, создаваемого заряженной частицей вблизи горизонта невращающейся черной дыры. Их расчеты, основанные на стандартной парадигме искривленного пространства-времени, показали, что кривизна пространства-времени искажает силовые линии так, как показано на рис. 11.Зв. Ханни и Руффини заметили сходство этих силовых линий с силовыми линиями на рис 11.35 (посмотрите на диаграмму (в) снизу; она практически такая же, как диаграмма (б)). Они предположили, что мы можем говорить о горизонте черной дыры в том же смысле, как мы говорим о металлической сфере. Таким образом, мы можем рассматривать горизонт как тонкую мембрану, состоящую из положительно и отрицательно заряженных частиц, похожую на металлическую поверхность сферы. Обычно число положительных частиц повсюду на мембране равно числу отрицательных частиц, т. е. в любой области мембраны суммарный заряд равен нулю. Однако если к горизонту поднести заряженную частицу, в ближайшей к частице области скапливается избыток отрицательных частиц; тем самым в других областях мембраны образуется избыток положительных частиц, т. е. мембрана поляризуется. В результате картина силовых линий электрического поля, сформированного заряженной частицей и горизонтом, приобретает вид, показанный на диаграмме (в).
Я не считаю себя новичком в теории относительности и когда я впервые услышал об этой идее, то посчитал ее смехотворной. Из общей теории относительности следует, что тело, падающее в черную дыру, не ощутит на ее горизонте ничего, кроме кривизны пространства-времени: никакой мембраны и никаких заряженных частиц. Объяснение, данное Ханни — Руффини по поводу искривления силовых линий электрического поля заряженного шарика, не может иметь ничего общего с реальностью. Это чистая выдумка. Я был уверен, что силовые линии искривляются вследствие кривизны пространства-времени и ничего более, что они искривляются вблизи горизонта из-за того, что на них действуют приливные силы гравитации (диаграмма (в)), а не из-за того, что они притягиваются к заряду на поляризованном горизонте. Я считал, что горизонт не может обладать никаким поляризованным зарядом. Я был не прав.
Спустя пять лет Роджер Блэндфорд и выпускник Кембриджского университета Роман Знаек сделали открытие, согласно которому энергия вращения черной дыры может преобразовываться с помощью магнитного поля в энергию мощных струй (процесс Блэндфорда— Знаека, глава 9 и рис. 11.4а). Расчеты Блэндфорда и Знаека, выполненные с учетом кривизны пространства-времени, показали, что в процессе извлечения энергии на горизонте черной дыры вблизи ее полюсов возникают электрические токи в виде положительно заряженных частиц, падающих внутрь. Возле экватора токи вытекают с горизонта в виде падающих внутрь отрицательно заряженных частиц. Создавалось такое впечатление, что черная дыра является элементом электрической цепи.
11.4. Две точки зрения на возникновение струй у вращающейся замагниченной черной дыры (процесс Блэндфорда — Знаека). (а) Вращение черной дыры вызывает в пространстве появление «водоворота», который приводит к вращению магнитных силовых линий, пронизывающих черную дыру. При вращении поля появляются центробежные силы, которые ускоряют плазму до высоких скоростей (ср. с рис. 9.7 г). (б) Магнитные поля и закручивание пространства приводят к появлению большой разницы потенциалов между полюсами и экватором черной дыры; по существу, черная дыра становится генератором напряжения и мощности. Благодаря разности потенциалов в цепи возникает электрический ток. Мощность электрической энергии по цепи передается от черной дыры к плазме и ускоряет ее до высоких скоростей
Более того, из расчетов следовало, что черная дыра ведет себя в этой цепи как генератор напряжения (рис. 11.4б). Благодаря действию этого генератора напряжения ток вытекает с экватора на горизонте черной дыры, течет вверх вдоль магнитных силовых линий и удаляется на довольно большое расстояние от черной дыры, затем плазмой (которая представляет собой горячий газ, проводящий электрический ток) переносится к другим силовым линиям вблизи оси вращения черной дыры и втекает вдоль этих силовых линий обратно на горизонт.
Магнитные силовые линии в этой электрической цепи играют роль проводов, плазма действует как нагрузка, с помощью которой из цепи извлекается мощность, а вращающаяся черная дыра является источником энергии.
С этой точки зрения (рис. 11.4б), плазма ускоряется за счет мощности, переносимой по цепи, в результате чего происходит образование струй. С точки зрения главы 9 и рис. 11.4а, ускорение плазмы происходит при вращении и закручивании магнитных силовых линий. Эти две точки зрения — всего лишь два разных способа рассмотрения одного и того же. В обоих случаях энергия поступает, в конце концов, из черной дыры. Будем ли мы считать, что энергия переносится в электрической цепи или же вдоль вращающихся силовых линий, — всего лишь дело вкуса.
Идея описания черной дыры в терминах электрической цепи была совершенно неожиданной, хотя она и была основана на стандартных законах физики в искривленном пространстве-времени. Казалось очень странным, что в черной дыре может течь ток — внутрь возле полюсов и наружу около экватора. В течение 1977 и 1978 гг. Знаек и, независимо от него, Тибо Дамур, незадолго до этого получивший степень доктора философии в Парижской обсерватории, раздумывали над этой странностью. Пытаясь понять поведение тока, они представили уравнения искривленного пространства-времени, описывающие вращение черной дыры, плазму и магнитное поле, в необычной форме и дали им интересную интерпретацию: ток, достигающий горизонта событий, не втекает в черную дыру. Вместо этого он распространяется по горизонту, и переносят его заряды типа тех, которые были введены Ханни и Руффини. Ток течет по горизонту от полюса к экватору, где он истекает вдоль магнитных силовых линий. Более того, Дамур и Знаек сделали открытие, что законы, которым подчиняется перемещение тока и зарядов по горизонту событий, являются элегантными версиями законов электричества и магнетизма в плоском пространстве-времени — это законы Гаусса, Ампера, Ома и закон сохранения заряда (рис. 11.5).
Дамур и Знаек вовсе не настаивали на том, что существо, падающее внутрь черной дыры, встретит на своем пути горизонт в виде мембраны, на котором будут существовать электрические заряды и токи. Они всего лишь утверждали, что поведение электрического поля, магнитного поля и плазмы вне черной дыры удобно рассматривать, представив себе горизонт событий в виде мембраны, на которой существуют заряды и токи.
11.5. Законы, управляющие движением электрических зарядов и токов на горизонте событий черной дыры, имеющем вид мембраны, (а) Закон Гаусса — поверхностный заряд на горизонте в точности таков, что все пересекающие его силовые линии электрического поля на нем замыкаются и не проникают внутрь черной дыры; ср. с рис. 11.3. (б) Закон Ампера — поверхностный ток на горизонте создает магнитное поле, которое в точности уравновешивает часть магнитного поля, параллельного горизонту, так что под горизонтом параллельного поля нет. (в) Закон Ома — поверхностный ток пропорционален напряженности того участка электрического поля, которое является касательным к поверхности; коэффициент пропорциональности равен сопротивлению величиной 377 Ом. (г) Закон сохранения заряда — заряд никогда не пропадает и не создается; все положительные заряды, попадающие на горизонт событий из внешней Вселенной, начинают перемещаться по нему, пока вновь не уходят во внешнюю Вселенную (в форме текущих внутрь отрицательных зарядов, нейтрализующих положительные заряды)
Прочтя статьи Дамура и Знаека, я внезапно понял, что они, вслед за Ханни и Руффини, фактически вводили новую парадигму в исследовании черных дыр. Эта парадигма была удивительно красивой. Она увлекла меня. Не в силах сопротивляться ее очарованию, я провел почти все 80-е годы в попытках придать этой идее законченную форму. Мы работали вместе с Ричардом Прайсом, Дугласом Макдональдом, Яном Редмаунтом, Вай-Мо Суэном, Рональдом Кроули и др. Результатом этих усилий явилась книга Черные дыры: мембранный подход.
Законы физики черных дыр с точки зрения мембранной парадигмы совершенно эквивалентны соответствующим законам в парадигме искривленного пространства-времени, до тех пока мы ограничиваемся рассмотрением пространства, внешнего по отношению к черной дыре.
Тем самым, обе парадигмы дают совершенно одинаковые предсказания по поводу того, какими должны быть результаты любых экспериментов и наблюдений, проводимых вне черной дыры, в том числе всех астрономических наблюдений, проводимых с Земли. Когда я думаю над астрономическими и астрофизическими следствиями, я нахожу совершенно естественным пользоваться обеими парадигмами (мембраны и искривленного пространства-времени), совершая время от времени между ними «скачки разума», как при рассмотрении картины Эшера. Парадигма искривленного пространства-времени, горизонты которой сделаны из пустого изогнутого пространства и времени, может оказаться полезной по воскресеньям, когда я размышляю над пульсациями черных дыр. Мембранная парадигма, в которой горизонт событий представляет собой электрически заряженную мембрану, может быть полезной по понедельникам, когда я раздумываю над тем, как образуются струи у черных дыр. Поскольку у меня есть гарантия, что я получу одинаковые выводы в обеих парадигмах, каждый день я могу пользоваться той из них, которая лучше всего отвечает моим потребностям.
Совсем другая ситуация внутри черной дыры. Любое существо, падающее внутрь черной дыры, обнаружит, что горизонт — это не мембрана, наделенная зарядом. Внутри черной дыры мембранная парадигма полностью теряет свою силу. Падающие существа, однако, должны заплатить за это открытие дорогую цену: они не смогут опубликовать свое открытие в научных журналах внешней Вселенной.