1.3.9. Природные радиоактивные семейства

Вскоре после открытий А. Беккереля, супругов Кюри, исследований Э. Резерфорда и других их современников и последователей выяснилось, что некоторые индивидуальные природные радиоактивные вещества находятся в «родственных» отношениях. Так, например, было установлено, что радон образуется при распаде радия, но и сам распад радона приводит к образованию некоторых не газообразных радиоактивных осадков. Дальнейшие подробные исследования минерального сырья, содержащего уран и торий, и соединений этих элементов позволили обобщить, казалось бы, разрозненные сведения о природной радиоактивности и сформулировать представление о трех природных радиоактивных семействах (рядах). Родоначальники этих семейств соответственно следующие радиоактивные изотопы: 238U, 235U и 232Th.

В результате последовательных ?– и ?-распадов эти радионуклиды в конце концов порождают стабильные изотопы свинца с массовыми числами 206, 207 и 208 (Интересно отметить, что природный свинец состоит из четырех стабильных изотопов с массовыми числами 204 (1,48%), 206 (23,6%), 207 (22,6%) и 208 (52,3%). При этом вероятно, что Pb-204 является ?-излучателем с исключительно большим периодом полураспада (порядка 1017 лет). Таким образом, практически весь (98,5%) природный свинец имеет радиогенное происхождение, тем более, что кроме этих стабильных нуклидов известны еще четыре радиоактивных, входящих в природные семейства, с массовыми числами 210, 211, 212 и 214)..

Таким образом, члены каждого ряда генетически связаны друг с другом, а их массовые числа отвечают следующим формулам: 4n для ряда тория, 4n +2 для ряда урана-238 и 4n+3 для ряда урана-235 вследствие того, что при ?-превращении ядро с массовым числом (м.ч.) A образует новое ядро с м.ч. = А – 4, а при ?-распаде возникает изобар, т.е. м.ч. не изменяется. На этом основании можно быстро отнести любой радионуклид из этих семейств к своему ряду, проделав простейшее вычисление. Например, можно поинтересоваться, в какие семейства входят следующие изотопы радия: 226Ra, 223Ra, 224Ra и 228Ra? Очевидно, что 226 = 4 • 56 + 2; 223 = 4 • 55 + 3; 224 = 4 • 56 и 228 = 4 • 57.

То есть, первый радионуклид входит в семейство урана-238 (его часто и называют семейством урана–радия, т.к. именно радий-226 и был открыт супругами Кюри в урановой руде), второй принадлежит ряду урана-235, а два последних изотопа являются членами семейства тория (см. рис. 1.3. – 1.5.).

Семейства 4n+1 как природного ряда не существует, хотя искусственными методами в разное время были получены радионуклиды, взаимные превращения которых (При этом не следует забывать, что все самопроизвольные процессы радиоактивных превращений (распада) являются необратимыми.) логически укладываются в схему ряда 4n+1. Из всех известных на сегодняшний день наиболее долгоживущих искусственных радионуклидов этой формуле массового числа соответствует 237Np, который и «назначен» родоначальником этого семейства (впервые это было сделано Г. Сиборгом в 1948 году). Этот ряд в известной степени виртуален, т.к. на Земле скорей всего нет такого места, где члены данного семейства присутствовали бы практически полностью, хотя бы и в состоянии нарушенного равновесия, как, например, члены первых трех рядов в урановых и ториевых минералах «солидного» возраста. Даже если проанализировать какой-нибудь самый старый образец, содержащий 237Np (а он был получен не раньше 1940 года, когда были синтезированы ядерно-физическими методами первые радионуклиды нептуния Макмилланом и Эйблсоном), то в нем ни при каких обстоятельствах вековое равновесие не могло состояться, т.к. второй по значимости периода полураспада искусственный изотоп урана, входящий в это семейство, 233U, имеет T1/2 = 1,59 • 105 года.

Рис. 1.3. Радиоактивное семейство урана (U-238).

Рис. 1.4. Радиоактивное семейство урана (U-235).

Рис. 1.5. Радиоактивное семейство тория (Th-232).

Отсутствие радионуклидов этого ряда в природных объектах является эмпирическим фактом и, поскольку 237Np не имеет в качестве материнского предшественника никакого более долгоживущего радиоактивного изотопа, обычно этот факт объясняют тем, что период полураспада нептуния недостаточно велик по сравнению с возрастом Земли, признаваемым сегодня за правдоподобный (несколько миллиардов лет). Одним словом, если на заре геологической истории нашей планеты это семейство и существовало, то его отсутствие на настоящее время объясняется очень просто: оно (т.е. даже самые долгоживущие его члены) распалось полностью.

Знание количественных особенностей эволюции природных семейств помогает решить ряд технологических и аналитических проблем, связанных с ураном и торием. Рассмотрим некоторые из них в качестве примеров.

1. Известно, что в каждом природном семействе присутствуют изотопы радиоактивного газа радона 219Rn (T1/2 = 3,96 c), 220Rn (T1/2 = 55,6 с) и 222Rn (3,8235 сут). То, что эти газообразные радионуклиды создают сложную радиационную ситуацию в местах добычи и первичной обработки урановых и ториевых руд, является общеизвестным фактом. Но возникает вопрос: насколько опасны в этом отношении химически чистые соединения урана и тория?

Будем исходить из того, что более или менее чистые препараты этих элементов не могли быть приготовлены ранее до их открытия; скорее всего синтез их оксидов или солей состоялся несколько позже. Так, уран был открыт в виде UO2 Клапротом в 1789 году, а в металлическом состоянии он был получен Пелиго только в 1841 году. Торий был открыт в 1829 году Берцеллиусом.

Вернемся к поставленому вопросу, уточнив его: если есть сейчас на Земле самые «старые» препараты (оксид, соль и т.п.) урана и тория, соответственно не более 212 и 160 лет, если приурочить оценку к началу третьего тысячелетия – 2001 году, то насколько заметно выделяют радон хотя бы они? (У более свежих препаратов этот процесс менее вероятен).

Обратимся прежде к ряду урана – радия. Примем к сведению следующее. Какой бы ни была технология переработки уранового сырья, любой препарат будет содержать все три природных его изотопа – 234U, 235U и 238U вследствие их химической идентичности. Очистка уранового соединения от всевозможных примесей приведет к удалению из препарата двух промежуточных радионуклидов (234Th и 234 Pa) и «хвостов» обоих рядов, начиная с 230Th и 231Th, т.к. химические свойства этих изотопов отличаются от свойств урана.

На основании формулы Бейтмена можно сделать вывод, что уже через 7–8 месяцев (около 10 периодов полураспада 234Th) участок ряда между 238U и 234U «зарастет» и оба радионуклида, 234Th и 234Pa, будут находиться с 238U в вековом равновесии. Но восстановление равновесия между 234U и 230Th, что является лимитирующей стадией этого процесса для «хвоста» уранового ряда, в технологическое время невозможно. Даже достижение только 1% от векового (A230Th/A234U = A2/A1 = 0,01) потребует не один десяток тысяч лет:

0,01 = 1–2 t/T 1/2,2 , откуда tp = 5,4 • 104 года.

При таких соотношениях периодов полураспада появление 226Ra в чистом урановом препарате в технологически значимое время – еще менее вероятное событие. Именно поэтому урановые соединения не выделяют сколько-нибудь заметных количеств 222Rn.

235U, доля которого в природном уране составляет 0,72%, тоже довольно быстро восстановит равновесие со своим дочерним 231Th (T1/2 = 25,52 ч), но «перешагнуть» через долгоживущий 231Pa (T1/2 = 3,276 • 104 года) он не сможет по тем же причинам, что и 238U, так что и другой изотоп радона («четырехсекундный» актинон) в урановом препарате не появится.

Другое дело – соединения тория. В его семействе временным барьером в установлении равновесия является 228Ra, период полураспада которого (5,75 года) не настолько велик, чтобы считать восстановление ториевого ряда в технологическое время явлением незаметным. Конечно, препараты, возраст которых по крайней мере 30 лет, содержат в своем составе все семейство тория, но, надо полагать, даже пятилетние образцы будут выделять заметные количества торона (так традиционно называют короткоживущий изотоп радона ториевого ряда, 220Rn). Это обстоятельство не следовало бы игнорировать, тем более, что здесь возможны количественные оценки на основании формулы Бейтмена.

2. Предпримем еще один мысленный эксперимент. Представим себе, что все члены уранового семейства, находящегося в вековом равновесии, в некий момент времени были пространственно разобщены. При этом, конечно, генетически связанные процессы распада и накопления останутся без изменений, и во всем семействе поэтому равновесие не будет нарушено (если семейство рассматривать в целом, в расчетном, системном смысле, безотносительно к тому, где находится каждый индивидуальный препарат). Но если рассматривать каждую фракцию отдельно, независимо от всех остальных, то можно засвидетельствовать как «практически полный» распад некоторых членов ряда, так и процессы возрастания суммарной активности в соответствии с формулой Бейтмена.

Так, в образце, содержащем радиохимически чистый 238U будет нарастать суммарная активность за счет образования 234Th и 234Pa вплоть до установления векового равновесия (практически уже через полгода):

A(238U) = A(234Th) = A(234Pa) ? inv(t).

В образцах 234U и 230Th в технологически значимое время «практически ничего не будет происходить» вследствие их геохронологически существенных периодов полураспада. В образце 226Ra уже за месяц восстановится равновесие во всем подсемействе до 210Pb, исключая его, т.к. его включение в равновесную цепочку – процесс гораздо более медленный. Активность этого изотопа свинца достигнет половины от максимального равновесного значения только через 22,3 года.

Данный текст является ознакомительным фрагментом.