А нужна ли красота?

Однажды на концерте в Бостоне я обратил внимание на то, как поразила слушателей сила и экспрессия Девятой симфонии Бетховена. После концерта, когда в голове у меня ещё звучали волнующие мелодии, я прошёл мимо опустевшей оркестровой ямы и заметил, как слушатели застывают возле неё и с удивлением разглядывают партитуру, оставленную музыкантами.

Я задумался: неискушённому взгляду партитура даже самой экспрессивной музыкальной пьесы должна казаться беспорядочной мешаниной неразличимых закорючек, похожих скорее на непонятные каракули, чем на прекрасное произведение искусства. Но для опытного музыканта все эти такты, ключи, ноты, диезы и бемоли оживают и отзываются у него в голове. Музыкант способен слышать красоту гармоний и богатство звуков, просто просматривая партитуру. Значит, нотная запись музыки — нечто большее, чем сумма составляющих её обозначений.

Точно так же определить поэтическое произведение как «набор слов, организованных согласно определённому принципу» — значило бы оказать ему плохую услугу. Это определение лишено не только выразительности, но и точности, так как не учитывает утончённую взаимосвязь между поэзией и эмоциями, которые она вызывает у читателя. Поэзия передаёт чувства и фантазии автора, и это несравненно больше, чем просто слова, напечатанные на бумаге. Несколько кратких слов японского трехстишия хайку, например, способны перенести читателя в новый мир ощущений и эмоций.

Подобно музыке или живописи, математические уравнения могут иметь естественное развитие и логику, вызывая порой настоящие страсти в душе учёного. Несмотря на то что эти уравнения непонятны непосвящённым, для учёного каждое такое уравнение подобно одной из частей большой симфонии.

Простота. Элегантность. Эти свойства вдохновляли величайших художников на создание шедевров, и они же побуждают учёных искать законы природы. Подобно прекрасному полотну или запоминающемуся стихотворению, уравнения обладают собственной красотой и гармонией.

Физик Ричард Фейнман выразил эту мысль так:

Распознать истину можно по её красоте и простоте. Если твоя догадка верна, её справедливость очевидна, по крайней мере если у тебя есть хоть какой-то опыт, потому что обычно на основании малого делаются далекоидущие выводы… Несведущие люди, безумцы и им подобные могут высказывать простые догадки, но ошибочность этих догадок видна сразу, поэтому они не в счёт. Студенты, которым недостаёт опыта, высказывают чрезвычайно сложные, запутанные предположения, которые на первый взгляд выглядят обоснованными, но я вижу, что это не так, потому что истина всегда оказывается проще, чем нам представляется{49}.

Французский математик Анри Пуанкаре высказался ещё откровеннее, когда писал: «Учёный исследует Природу не потому, что она полезна, а потому, что он в восторге от неё, а в восторге он по той причине, что она прекрасна. Не будь Природа прекрасной, она была бы недостойна изучения, а если бы Природу не стоило изучать, не стоило бы и жить». В каком-то смысле физические формулы подобны стихотворениям о природе. Они коротки, организованы по некоему принципу, и лучшие из них передают скрытую симметрию природы.

Вспомним, например, что поначалу уравнений Максвелла было восемь. «Красивыми» их не назовёшь. Симметричностью они не обладают. В своей исходной форме они безобразны, тем не менее это хлеб с маслом для каждого учёного-физика или инженера, который зарабатывает на жизнь благодаря радарам, радио, микроволнам, лазерам или плазмам. Эти восемь уравнений — всё равно что гражданский кодекс для адвоката или стетоскоп для врача. Но если переписать эти уравнения, приняв время за четвёртое измерение, довольно громоздкий набор сократится до единственного тензорного уравнения. Вот что физики называют «красотой», ведь теперь выполняются оба условия. Увеличивая количество измерений, мы вскрываем истинную, четырёхмерную симметрию теории и получаем возможность объяснить множество экспериментальных данных с помощью единственного уравнения.

Как мы уже не раз видели, добавление высшего измерения приводит к упрощению законов природы.

Одна из величайших загадок, с которыми столкнулась современная наука, — происхождение таких симметрий, особенно в субатомном мире. Когда наши мощные установки расщепляют ядро атома, высвобождая энергию, превышающую триллион электронвольт, мы видим, что фрагменты могут располагаться симметрично. Бесспорно, при достижении субатомного уровня происходит редкое и примечательное явление.

Однако наука предназначена не для того, чтобы восхищаться элегантностью законов природы, а чтобы объяснять их. Главная проблема физики субатомных частиц заключается в следующем: исторически сложилось так, что мы понятия не имеем, почему в наших лабораториях и на классных досках возникли эти симметрии.

Именно поэтому терпит фиаско Стандартная модель. Какой бы удачной ни была эта теория, физики всего мира убеждены, что её должна сменить теория более высокого порядка. Стандартная модель проваливает оба «теста» на красоту. В ней нет единой симметричной группы, и она не даёт практичного описания субатомного мира. Но что ещё важнее, Стандартная модель не объясняет, откуда изначально берутся симметрии. Их просто принудительно соединили, без сколько-нибудь глубокого понимания их истоков.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК