МЕНЬШЕ ШУМА!

В следующую главу мы не можем войти без рубина. Это замечательный волшебный камень, в сердце которого, как оказалось, дремлет красное солнце. Но даже до того, как физики раскрыли его главный секрет, рубин высоко ценился в технике. Его значение и до создания квантовых парамагнитных усилителей выходило далеко за пределы интересов модниц и ювелиров.

Еще в середине прошлого века ученые разработали метод получения искусственных рубинов. Это позволило широко применить рубин в приборостроении. Каждый знает, что качество часов во многом зависит от того, сколько в них «камней». «Камнями» часовщики называют изготовленные из рубина миниатюрные подшипники, в которых вращаются оси часового механизма, и маленькие зубчики на качающейся вилке часового хода. В хороших современных часах иногда более двух десятков таких камней. Подшипники из рубина применяются и в различных электроизмерительных приборах, в компасах, сейсмографах и других точных приборах.

Сейчас приборостроительная промышленность ежегодно расходует тонны искусственных рубинов. Они изготавливаются весьма прозаично: на заводах в специальных печах Вернейля. В этих печах внутри керамического теплозащитного цилиндра бушует пламя кислородо-водородных горелок. Сверху в пламя непрерывно сыплется размолотая до состояния тончайшей пудры окись алюминия, в которую добавлено небольшое количество окиси хрома. Пылинки пудры плавятся на лету и в виде мельчайших капелек падают на затравку — маленький кристаллик рубина, расположенный в нижней части пламени на специальном держателе. В то время как на затравке оседает слой жидкой окиси алюминия, держатель, медленно вращаясь вокруг оси, постепенно опускается вниз.

Спускаясь в более холодную часть печи, окись алюминия затвердевает, сливаясь с кристаллом-затравкой в единое целое. Постепенно вырастает большой прозрачный камень, похожий на застывшую каплю замерзших красных чернил.

Цвет искусственного рубина можно регулировать так же плавно, как, скажем, накал электрической лампочки или тон краски на картине художника. Нужно лишь менять содержание хрома в рубине! Для ювелирных целей и для технических применений обычно в кристалл вводится несколько процентов хрома. Но исследования Прохорова и других физиков показали, что для квантовых усилителей это не подходит. Для них необходим бледнорозовый рубин, содержащий лишь сотые доли процента хрома.

Правда, в некоторых случаях берется немного более высокая концентрация. Американский ученый Т. Мейман обнаружил, что, доведя концентрацию хрома до десятых долей процента, при которой обычные квантовые усилители уже не работают, можно создать усилитель, действующий при температуре жидкого азота, то есть при 77 градусах выше абсолютного нуля. Эффект усиления был им получен даже при температуре сухого льда (твердой углекислоты), а это 195 градусов выше абсолютного нуля. К сожалению, эти весьма интересные опыты не нашли еще практического применения. Хотя работать с жидким азотом, а тем более с сухим льдом много удобнее и дешевле, чем с жидким гелием, усилители, способные действовать при этих температурах, недостаточно хороши и пока не могут конкурировать с другими типами малошумящих усилителей.

Новым приборам было нелегко пробивать себе дорогу в жизнь. Они встречали жестокую конкуренцию со стороны других усилителей и должны были доказать свое преимущество. А преимущество было действительно бесценное.

О внутренних шумах радиоприемников знает каждый внимательный радиослушатель, каждый наблюдательный телезритель. Даже в тихой лесной избушке, удаленной от городов с их заводами, троллейбусами, неоновыми рекламами и рентгеновскими трубками, создающими помехи радиоприему, даже при питании от батарей, даже зимой, когда от ближайших гроз нас отделяют тысячи километров, мы слышим слабый шум и видим на экране телевизоров легкую рябь. Особенно мешает это при приеме дальних радиостанций. Эти шумы и помехи возникают внутри радиоприемников, главным образом в электронных лампах.

В борьбе за чувствительность радиоприемников ученые достигли очень больших результатов. Они близко подошли к пределу — идеальному приемнику, не вносящему в передачу своих собственных шумов. Правда, идеал есть идеал, он, как горизонт, удаляется по мере того, как к нему приближаются. Идеального приемника нет и никогда не будет. Но приблизиться к идеалу не только мечта, но и практическая задача ученых и инженеров.

Лучшие электронные лампы и специальные полупроводниковые параметрические усилители, работающие в диапазоне сантиметровых волн, имеют очень малые шумы. Ученые оценивают их сотнями градусов. Не удивляйтесь, для расчетов оказывается более удобным оценивать шумы в градусах, а не в электрических или акустических единицах. В тех же градусах, которыми мы измеряем температуру. Так, идеальный приемник не шумел бы вовсе и его условная шумовая температура была бы равна нулю градусов. Отдельные образцы современных приемников имеют шумовую температуру вблизи ста градусов. Но и это слишком много для радиоастрономов, которым необходимо принимать очень слабые сигналы. Они бы просто утонули в собственных шумах приемной аппаратуры. Квантовые парамагнитные усилители смогли скачком улучшить чувствительность приемников. Они имеют шумовую температуру, измеряемую лишь десятками градусов, причем большая часть шумов возникает даже не в самом усилителе, а в антенне и волноводах, соединяющих антенну с усилителем. Почти что идеал! Не дотягивают буквально на десятку.

Только такое большое увеличение чувствительности смогло обеспечить квантовым парамагнитным усилителям путевку в жизнь, несмотря на то, что их применение много сложнее, чем работа с электронными лампами или полупроводниковыми усилителями.

Особенно усложняет дело необходимость применения жидкого гелия. Гелий ведь сравнительно редкий газ. Он образуется при радиоактивном распаде природных радиоактивных элементов, и так как гелий легче воздуха, то, попав в атмосферу, он быстро поднимается вверх и в приземном слое воздуха его так мало, что добывать гелий из воздуха все равно, что переливать из пустого в порожнее.

Сейчас основным источником гелия служат природные горючие газы, в которых содержится сравнительно большой процент гелия. Имеется гелий и в источниках радиоактивных вод, в нефти и некоторых минералах. Так что промышленная добыча гелия сейчас с избытком покрывает потребность. Но получить газообразный гелий еще далеко не все. Гелий имеет упрямый характер — он наиболее трудно конденсируемый из всех известных веществ. Долго считалось, что он ни при каких условиях не превращается в жидкость. Он покорился лишь в начале нашего века. Для его сжижения необходимы специальные машины. Хранить жидкий гелий можно только в сосудах, напоминающих большие термосы.

Но ученые вынуждены идти на преодоление всех этих трудностей, лишь бы получить сверхчувствительные малошумящие приемники сверхвысоких частот! Сейчас на повестке дня стоит внедрение специальных гелиевых холодильников. Эти холодильники основаны на тех же принципах, которые используются в большинстве бытовых и промышленных холодильников, только вместе применяемого в них фреона — синтезируемого химиками легко сжижающегося газа — в этих холодильниках циркулирует гелий. Небольшой компрессор сжимает гелий так же, как это происходит в обычных холодильниках. Расширяясь в специальных устройствах, сжатый газ сильно охлаждается и, охладившись, превращается в жидкость.

Малогабаритные гелиевые холодильники не только обеспечат широкое применение квантовых парамагнитных усилителей, но и найдут применение во многих других областях науки и техники.

Но квантовые парамагнитные усилители должны были конкурировать с другими усилителями не только по «малошумности», но и по ширине полосы частот усиливаемых сигналов Усилители резонаторного типа, созданные различными советскими и зарубежными исследователями, были сравнительно узкополосными. Впрочем, ученым, работающим в области квантовой электроники, было ясно, что применение резонаторов вовсе не обязательно. Достаточно создать среду с инверсной населенностью — активную среду, и электромагнитная волна при прохождении по такой среде будет не ослабевать, а нарастать. Она будет не поглощаться, а усиливаться.

Однако простые расчеты показали, что даже в лучших парамагнитных кристаллах такое усиление мало. Для заметного усиления волна должна пробегать по активному веществу многие десятки, а то и сотни метров. Создавать такие громоздкие системы, которые нужно к тому же охлаждать жидким гелием, казалось неразумным.

Резонатор решал эту задачу много проще. Ведь волна, сотни и тысячи раз пробегая между стенками резонатора и каждый раз взаимодействуя с активным парамагнитным кристаллом, получала необходимое усиление в малом объеме. Однако резонатор не обеспечивал необходимой широкополосности. Возникал своего рода порочный круг.

Выход из этого нашли Р. де Грасс, Е. Шульц-Дюбуа и известный уже нам Р. Сковил. Они поняли, что активное вещество могло бы усиливать электромагнитную волну значительно сильнее, если бы эта волна бежала в веществе гораздо медленнее, чем это происходит в обычных волноводах. Это была ключевая идея. Подобно Аладдиновой лампе, она открыла перед исследователями путь к цели.

Эта мысль кажется довольно подозрительной. Ведь все электромагнитные волны распространяются со скоростью света. Но здесь отнюдь не возникало конфликта с законами природы. Скорость электромагнитных волн постоянна и неизменна только в пустом пространстве. Внутри вещества и вблизи его границы скорость электромагнитных волн зависит и от свойств вещества и от формы его поверхности и легко может быть изменена. Необходимые методы были уже разработаны при создании электронных ламп с поэтичным названием: ламп с бегущей волной. При этом уже были созданы различные системы, замедляющие электромагнитные волны. Для квантовых парамагнитных усилителей наиболее удобными из них оказались волноводы, вдоль одной из стенок которых торчали штыри или в середине которых помещалась проволочка, изогнутая в виде змейки. Эти простые приспособления не позволяли электромагнитной волне бежать прямо вдоль волновода. Волна вынуждена следовать вдоль изгибов змейки или обегать каждый штырь от подножия к вершине и обратно. В результате ее продвижение вдоль волновода сильно замедляется, чего и хотели достичь ученые. Они расположили вдоль волновода рядом с основанием штырей или рядом со змейкой кристаллы этилсульфата лантана с примесью гадолиния, улучшенные добавлением церия, и убедились в том, что усилитель работает. Но, несмотря на то, что усилитель охлаждался до температуры 1,6 градуса, то есть значительно ниже температуры жидкого гелия, он оказался пригодным только для лабораторных исследований. Слишком мало было даваемое им усиление.

Сковилу и его сотрудникам пришлось отказаться от облюбованного ими вещества и применить кристаллы рубина. Новый усилитель, работавший при температуре 1,5 градуса, показал себя вполне работоспособным. Даваемые им шумы оказались равными всего 12 градусам. Из них примерно 10 градусов относились за счет соединительных элементов, а сам усилитель давал всего около 2 градусов шума.

Создавая свой усилитель, Сковил и его сотрудники столкнулись с трудностью, часто досаждающей радиоинженерам и даже радиолюбителям.

Если в самом обычном усилителе усиленный выходной сигнал снова попадет на вход, возникнет обратная связь. Если эта связь достаточно велика, усилитель превратится в генератор. В нем самопроизвольно возникнут колебания, и он уже не сможет усиливать внешние сигналы.

Но активная среда, этот прекрасный усилитель, должна усиливать электромагнитную волну независимо от того, в каком направлении она бежит — слева направо или обратно. Это значит, что если даже малая часть волны отразится от конца усилителя и побежит к его началу, а затем, снова отразившись, пойдет по нему опять, то она раз от раза будет усиливаться, и если усиление достаточно велико, то усилитель превратится в генератор. Он, как говорят радисты, самовозбудится и будет генерировать радиоволны даже при отсутствии внешнего сигнала. При этом он уже не сможет работать как усилитель.

Сковил, конечно, знал об этом и принял необходимые меры. Он поместил в волновод своего усилителя кусочки феррита. Феррит — это особое магнитное вещество, которое в присутствии магнитного поля пропускает радиоволны, идущие в одну сторону, и поглощает их, если они бегут в обратном направлении. Так как парамагнитный усилитель и без того работал в магнитном поле, то феррит без дополнительных усложнений обеспечивал поглощение обратной волны и тем самым нормальную работу усилителя.

Советские ученые внесли большой вклад в разработку квантовых парамагнитных усилителей. Прохоров первым достиг коротковолнового края сантиметрового диапазона. С ним работал кандидат физико-математических наук Н. В. Карлов и другие фиановцы.

Карлов, который, несмотря на молодость, давно приобрел репутацию хорошего радиоастронома, а стал доктором, подобно Бонаноми, покинул звезды и планеты, чтобы обеспечить радиоастрономам помощь ее ровесницы квантовой электроники. Карлов — автор уникального усилителя, способного усилить почти неуловимое излучение атомов водорода из глубины вселенной. Приняв эту своеобразную радиопередачу, можно исследовать распределение водорода во вселенной и получить новые данные о ее структуре, которые другим способом получить невозможно.

Карлов — один из способнейших молодых физиков школы Прохорова. Кончил он тот же «физтех», что и Ораевский, делал диплом в ФИАНе и с тех пор работа в лаборатории Александра Михайловича. Кстати, работали они вместе с женой — она специалист по аппаратуре. Таким образом, их дуэт перекрывает весь диапазон встречающихся в работе проблем — от теории до практики.

Этим они напоминают мне молодую супружескую пару из лаборатории Басова — Тамару и Толю Никитиных. Они вместе сделали водородный мазер, а потом глава семьи первым защитил диссертацию. Тамара, у которой, кроме водородного генератора, еще маленькие сын и дочь, «защищали» во вторую очередь. И когда у них дома праздновалось это событие, большинство тостов было за совместное творчество, за семейственность.

Карловы уже выполнили ряд замечательных работ. Особенно удачными оказались те, в которых для улучшения парамагнитных усилителей применены сверхпроводящие магниты.

Сверхпроводимость, открытая свыше полувека назад, до последнего времени не имела практического применения. Ученые всего мира исследовали это замечательное явление, состоящее в том, что вблизи абсолютного нуля некоторые металлы полностью лишаются электрического сопротивления. Электрический ток в них при этом может течь беспрепятственно, не требуя для своего поддержания никаких источников. Казалось, ничто не препятствует ему, дай только начальный импульс посильнее. Но нет — ток, протекающий в сверхпроводнике, сам ограничивает свою силу. Став слишком большим, электрический ток разрушает сверхпроводимость. Конечно, не нагревом — где нет сопротивления, нет и выделения тепла. Ток разрушает сверхпроводимость неразрывно связанным с ним магнитным полем.

Три советских физика-теоретика, удостоенные в Ленинской премии, — А. А. Абрикосов, В. Л. Гинзбург и Я. П. Горьков, — используя метод, разработанный академиком Л. Д. Ландау, задумали сделать сверхпроводник более стойким к разрушающему действию магнитного поля. Они изучили процессы, определяющие свойства сверхпроводников, и поняли, какими их нужно сделать, чтобы пропускать по тончайшим сверхпроводящим проволочкам очень сильный ток. Одновременно появилась и возможность создавать материалы, остающиеся сверхпроводниками при более высокой, чем раньше, температуре. Металлурги создали специальные материалы, а инженеры научились делать из них тончайшие проволочки. Появились сверхпроводящие магниты, дающие поля в десятки тысяч эрстед.

Фиановцы подхватили эту эстафету. Их парамагнитные усилители и без того требовали применения жидкого гелия. Грех был не попробовать здесь сверхпроводящих магнитов. И опыт удался. Усилитель стал много легче, надежнее и удобнее, а сверхпроводимость сделала шаг из лаборатории в жизнь.

Новая область, как магнитом, притягивала талантливых людей. В. Б. Штейншлейгер, бывший уже известным специалистом в области сверхвысоких частот, почувствовал, что парамагнитные усилители могут вывести радиотехнику из многих затруднений. Для этого нужно прежде всего сделать их возможно более простыми и надежными. Штейншлейгер и его сотрудники, работая в тесном контакте с Прохоровым, решили важную и трудную задачу создания усилителя бегущей волны сантиметрового диапазона, работающего при температуре жидкого гелия, равной 4,2 градуса. Этот усилитель не требовал дополнительных манипуляций по понижению температуры ниже температуры жидкого гелия, необходимых для усилителя Сковила и остальных усилителей, разработанных в то время за рубежом.

Однако, несмотря на все преимущества квантовых парамагнитных усилителей бегущей волны, они до сих пор не нашли применения в дециметровом диапазоне. Дело в том, что по мере увеличения длины волны даже применение замедляющих структур не позволяет сделать конструкцию усилителя достаточно малой. Например, лучший парамагнитный усилитель бегущей волны, разработанный фирмой Белл для волны 21 сантиметр, имеет магнит весом в 90 килограммов.

При непрерывной работе в него дважды в сутки необходимо доливать по 7 литров жидкого гелия. Остальные подобные усилители еще менее удобны в работе.

Это заставило ученых искать другие пути создания квантовых усилителей дециметрового диапазона, имеющих более широкую полосу, чем простые резонаторные усилители. Штейншлейгер и Карлов в Советском Союзе и некоторые зарубежные исследователи предложили применить для расширения полосы дополнительные резонаторы, связанные с рабочим резонатором квантового парамагнитного усилителя. Это дало некоторый эффект, но большого расширения полосы в дециметровом диапазоне добиться не удалось.

Радикальное решение задачи было найдено М. Е. Жаботинским и А. В. Францессоном из Института радиотехники и электроники Академии наук СССР. Они тоже применили многорезонаторную систему. Однако в отличие от предшественников все их резонаторы активны, то есть в каждом из них находится парамагнитный кристалл. Это позволило на волне 21 сантиметр получить в трехрезонаторном усилителе полосу, большую, чем в усилителе бегущей волны фирмы Белл (при одинаковом усилении). Полоса их усилителя ограничивается только свойствами кристалла рубина, примененного здесь в качестве активного вещества.

Жаботинский и Францессон сильно уменьшили размеры усилителя, заменив обычные объемные резонаторы миниатюрными резонаторами так называемого полоскового типа. В них резонирует не металлическая полость, а маленькие полоски фольги, помещенные внутри волновода. Благодаря этому здесь удалось обойтись магнитом в 90 раз более легким, чем магнит в усилителе фирмы Белл. Это, в свою очередь, позволило полностью погрузить магнит в жидкий гелий, что придало усилителю чрезвычайную стабильность.

Малый объем усилителя и небольшое количество рабочего вещества, необходимого для получения нужного усиления, позволило значительно сократить расход жидкого гелия. При непрерывной работе в него надо доливать только по 5 литров жидкого гелия, и не каждые сутки, как в усилителе фирмы Белл, а лишь дважды в неделю.

Этот усилитель пока является рекордным как по своим радиотехническим характеристикам, так и по эксплуатационным свойствам. Он установлен на Большом радиотелескопе Главной астрономической обсерватории в Пулкове.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК