ПРОКЛЯТЫЙ ВОПРОС

Девятнадцатый век кончился в обстановке относительного благодушия и благополучия. Давно отгремели залпы революций. Французская республика не многим отличалась от окружавших ее монархий.

В области науки тоже воцарилось удивительное спокойствие. После недавних великих открытий и изобретений наука и техника переживали гармонический прогресс. Паровая машина перестала зависеть от интуиции одиночек. Развитие термодинамики позволило инженерам строить паровые машины так же уверенно, как рычаги и полиспасты.

На смену Фарадею, этому гениальному экспериментатору, пришел поклонявшийся уравнениям Максвелл. Правда, в течение многих лет его почти никто не понимал. Он долго оставался генералом без армии. Но постепенно под его знамена пришли люди следующего поколения, и дотоле мертвая конструкция электродинамики внезапно обрела жизнь. Герц открыл предсказанные Максвеллом электромагнитные волны. Попов применил их для связи. Лорентц объяснил, как магнитное поле влияет на спектральные линии атомов. Менделеев, приведя в порядок первозданный хаос химических элементов, при помощи простых вычислений исправлял не укладывавшиеся в его таблицу атомные веса, предсказывал существование новых неведомых элементов. И его предсказания, как в сказке, сбывались одно за другим. Казалось, наука овладела последними тайнами природы. И знаменитый Джи Джи Томсон говаривал своим ученикам, что заниматься физикой уже не стоит, что она настолько завершена, что ее нужно лишь изучать и применять.

Но, к счастью, и среди ученых были неудовлетворенные, замечающие трещины и изъяны не только в сияющих башнях, но и в самом фундаменте науки. Они предчувствовали порывы ветра, грозящие поколебать здание, воздвигнутое трудами поколений.

Над одним из проклятых вопросов бился Макс Планк, педантичный и немного чопорный профессор Берлинского университета. Планка, как и многих других, беспокоило, что электродинамика, предсказавшая существование электромагнитных волн, открытых затем Герцем, показавшая, что свет есть одна из разновидностей этих волн, и добившаяся ряда других выдающихся успехов, оказалась бессильной в решении, казалось бы, простой задачи: все попытки применить электродинамику для описания взаимодействия электромагнитного излучения с веществом приводили к абсурду. Расчеты не совпадали с опытными фактами. Некоторые ученые поговаривали о том, что виновата электродинамика с ее непривычными абстракциями: что-то неладно в самых ее основах.

Планк не сомневался в том, что электродинамика Максвелла и близкая его сердцу наука о теплоте — термодинамика — безупречны. Он вновь и вновь пытался с их помощью помирить теорию с тем, что показывал опыт.

Как-то он обсуждал свои работы с одним из крупнейших физиков, Людвигом Больцманом, и тот сказал, что, по его мнению, нельзя построить вполне правильную теорию процессов излучения без привлечения в нее какого-то еще неизвестного элемента дискретности.

Планк глубоко уважал Больцмана, и это указание наложило отпечаток на дальнейшие исследования. И действительно, пытаясь примирить теорию и эксперимент, Планк пришел к формуле, в которой вместе с привычными для физиков непрерывными функциями стояли прерывные величины, изменявшиеся малыми скачками. Эта поразительная формула в точности изображала ту кривую, которая получалась из опыта.

Шел 1900 год. Новый век зарождался не только в календаре, но и в науке. В этом году Планк опубликовал формулу, описывающую распределение энергии в спектре электромагнитного излучения нагретых тел. Она была основана на предположении о том, что процесс испускания электромагнитной энергии не непрерывен, а дискретен, что электромагнитная энергия испускается и поглощается малыми порциями — квантами. Прекрасное совпадение этой формулы с опытом показало, что процесс испускания света подобен не истечению струи воды, а течению песка, которое кажется непрерывным только издали, когда не заметны отдельные песчинки.

Но XX век далеко не сразу стал веком квантов. Работа Планка не только не встретила признания, но вызвала сомнения и возражения.

Дискретность противоречила всему духу физики, и ученые никак не могли с ней примириться.

Нужно сказать, что Планк сам относился к своей формуле с осторожностью. Он говорил, что она может быть ошибочной, но может быть и верной, и в этом случае по своему значению окажется сравнимой с законом Ньютона. Будучи человеком консервативных взглядов, Планк долго медлил с опубликованием своего открытия. Только когда известный экспериментатор Рубенс показал Планку результаты своих новейших измерений, полностью совпавших с формулой Планка, ученый сообщил миру о своей теории.

В то время в университетах и академиях господствовал идеализм. Лишь немногие крупные естествоиспытатели были материалистами. Планк принадлежал к физикам-материалистам. Однако и ему было трудно осознать, что его открытие требует коренной ломки основ науки. Для того чтобы дать толчок революции, понадобился темперамент другого склада. И он нашелся.

В 1905 году, когда в России прокатилась первая революционная волна, в далекой, тихой, идиллической Швейцарии жил и работал в скромной должности эксперта патентного ведомства начинающий физик Альберт Эйнштейн. Его тоже привлекали неразрешенные задачи природы. В 1905 году он опубликовал сразу пять статей. По крайней мере две из них дали решающие толчки, потрясшие здание классической физики. В одной из них содержалась теория относительности, описание которой требует отдельной книги. В другой было показано, что квантовые свойства не возникают при взаимодействии света с веществом, как думал Планк, а являются неотъемлемой характеристикой света, присущей ему и в пустом пространстве.

Это никак не лишает света его волновых качеств. Просто в одном случае он проявляет себя как квант-частица, в другом — как волна.

Сейчас бесспорно, что эта двойственность является одним из основных свойств материи и проявляется не только в оптических явлениях, но и в свойствах электронов, протонов и всех других микрочастиц. В большинстве случаев они ведут себя как настоящие частицы, но при подходящих условиях они выявляют заложенные в них волновые свойства.

Но то, что представляется бесспорным сейчас, многие годы казалось большинству ученых весьма подозрительным. Даже творец квантов Макс Планк не признал квантовую теорию света. Через семь лет, представляя для избрания в Прусскую академию наук ставшего уже знаменитым благодаря теории относительности Эйнштейна, Планк и другие крупнейшие ученые писали, что ему не следует ставить в упрек гипотезу световых квантов!

Однако изгнать из физики мысль о том, что энергия в микромире существует в виде малых порций, было уже невозможно. Вскоре она еще раз доказала свою плодотворность.

Примерно в это же время, в 1911 году, Резерфорд, обстреливая атомы альфа-частицами, возникавшими при радиоактивном распаде, бесспорно доказал, что каждый атом состоит из тяжелого ядра, в котором сосредоточена почти вся его масса, и окружающих это ядро электронов. При этом ядро всегда несет на себе положительный электрический заряд, г электроны, имеющие отрицательный заряд, входят в атом как раз в таком количестве, чтобы обеспечить его электрическую нейтральность.

Физики теперь начали представлять себе атом как некое подобие солнечной системы — ядро играет роль Солнца, электроны — роль планет, а электрические силы притяжения положительного и отрицательного зарядов — роль силы всемирного тяготения. Но эта простая модель таила в себе неразрешимое противоречие. Уже раньше считалось твердо установленным, что всякое заряженное тело (а следовательно, и электрон) при движении по искривленному пути должно излучать энергию в виде электромагнитных волн. Но, теряя энергию при движении по орбите вокруг ядра, электрон должен постепенно приближаться к ядру и, наконец, упасть на него. Это значило, что атом должен рано или поздно погибнуть. А этого никогда не случалось. Атомы, по всем данным, являются устойчивыми, «вечными» образованиями.

Классическая физика, таким образом, вступила в противоречие с самим фактом существования атомов. Примирение здесь было невозможным. Нужна была новая радикальная идея.

И такая идея появилась. Нильс Бор предположил, что по каким-то непонятным причинам электроны, движущиеся по своим орбитам внутри атомов, не излучают энергию. Для каждого атома существует вполне определенный набор допустимых орбит. Ни по каким из других мыслимых орбит электроны в нем двигаться не могут. Если это так, если, вращаясь по своим орбитам, электроны не теряют энергии, то они могут перемещаться по своим орбитам вечно, как планеты вокруг Солнца.

Наука не признает гипотез, придуманных специально для объяснения одного непонятного факта. Если бы Бор ограничился этой гипотезой, она не вошла бы в золотой фонд науки и была бы забыта. Однако Бор выдвинул еще одну гипотезу. Он предположил, что электроны могут (каким-то неведомым образом, он не пытался описать этого в подробностях) переходить с одной орбиты на другую. При этом электроны теряют или приобретают извне квант энергии. Теряют, если переходят с удаленной орбиты на более близкую к ядру, и приобретают, переходя с нижней орбиты на верхнюю. Далее Бор предположил, что при этом закон сохранения энергии не нарушается. Энергия не исчезает и не рождается из ничего. Просто, теряемая электроном, она превращается в квант света — фотон и излучается в окружающее пространство. А при переходе электрона с нижней орбиты на верхнюю атом поглощает энергию фотона из окружающего пространства.

Если наука не признает нарочитых гипотез, то что можно выиграть, предложив не одну, а сразу три гипотезы? Но в том и проявился гений Бора, что эти три гипотезы, известные теперь как постулаты Бора, не только непринужденно объяснили факт существования атомов, но объединили между собой множество различных фактов, казавшихся до того таинственными и совершенно независимыми.

Прежде всего, и это произвело на ученых потрясающее впечатление, постулаты Бора выявили связь между строением атомов и их оптическими спектрами. Ключ к прочтению спектрограмм был найден!

Более полувека спектральные закономерности оставались книгой за семью печатями. Ученые собирали все больше и больше сведений о спектрах. Сводили их в толстые многотомные атласы и справочники. Все более совершенствовали спектроскопы и методы спектрального анализа. Но никто не мог сказать, почему спектр одного элемента отличается от спектра другого, как возникают эти спектры и что из них можно узнать, помимо самого факта наличия или отсутствия какого-либо элемента.

И вот выяснилось, что расстояние между орбитами, между которыми может прыгать электрон, определяет «цвет» кванта так же точно, как положение музыкальных нот на нотных линейках определяет высоту звука. То есть в том и в другом случае расстояние между уровнями определяет частоту излученной энергии (правда, в одном случае электромагнитной, в другом — звуковой). И теперь, зная строение атома данного элемента, можно заранее сказать, какие линии увидишь в его спектре излучения.

Бор при помощи своих постулатов рассчитал закономерности спектра водорода, и его вычисления удивительно точно совпали с опытом. Для более сложных атомов вычисления становились очень громоздкими, но ни у кого не было сомнения в том, что эти трудности будут преодолены.

Постулаты Бора позволили понять, сделали совсем наглядной картину строения атомов. Вот атом с простейшим, наиболее легким ядром. Вокруг него обращается один электрон. Это атом водорода. Рядом с ним более тяжелый атом, ядро которого удерживает два электрона. Это гелий. Перемещаясь вдоль таблицы Менделеева, мы встречаем все более тяжелые атомы, содержащие все большее число электронов.

Менделеев, создавая свою систему, опирался на периодическое повторение химических свойств, сопутствующее возрастанию атомных весов. При этом ему в нескольких случаях пришлось отдать предпочтение периодичности и поставить более тяжелые атомы перед более легкими. Теория, построенная на постулатах Бора, показала, что Менделеев сделал правильный выбор. Химические свойства атома определяются не его весом, а строением его электронной оболочки, количеством электронов, окружающих ядро, в конечном итоге электрическим зарядом ядра.

Стала ясной и связь между химическими свойствами атомов и их спектрами. В химических реакциях и в образовании оптических спектров участвуют только самые внешние электроны атома.

Бор, естественно, начал с самого простого атома, атома водорода. Применив к нему свои постулаты, Бор увидел, что единственный электрон этого атома может вращаться по различным орбитам. Чем больше орбита, тем больше и энергия движения электрона. При переходе электрона с удаленной орбиты на более близкую избыточная энергия излучается в виде фотона вполне определенной частоты. Для того чтобы перейти с внутренней ор. биты на внешнюю, электрон должен получить добавочную энергию. Эту энергию он может получить, поглотив подходящий фотон из окружающего поля. Подходящий в том смысле, что энергия поглощенного фотона должна быть в точности равна той энергии, которая нужна электрону для перехода с орбиты на орбиту.

Если энергия фотона будет больше или меньше необходимой, фотон не будет поглощен. Не претендуя на точность, можно сказать, что, пытаясь поглотить такой нерезонансный фотон, электрон «не допрыгнет» до нужной орбиты или «перескочит» через нее и будет вынужден вернуться в исходное состояние, предоставив фотону лететь своим путем.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК