Все вокруг радиоактивно!

We use cookies. Read the Privacy and Cookie Policy

Вернемся к гипотезе о кварк-глюонном родстве. Теория Салама и Пати была первой разведкой в этом направлении. Как говорил Гете, смелые мысли подобны передовым шашкам в игре — они гибнут, но обеспечивают победу! Сегодня физики отдают предпочтение другим, более совершенным вариантам теории. Но все они обладают общим недостатком: их предсказания и выводы можно проверить лишь при очень высоких энергиях, в миллиарды раз превосходящих то, что дают современные ускорители. Энергии космических частиц для этого также недостаточно. Даже у самых быстрых из них энергия в сотни раз меньше того, что нужно.

Казалось бы, кварк-лептонным теориям уготована участь пылиться в дальнем ящике письменного стола теоретиков. Есть такие теории, о которых говорят, что они «из области фантастики и, может, даже не научной»!

К счастью, природа оставила маленькую, как замочная скважина, щелку, через которую уже сегодня можно заглянуть в край сверхвысоких энергий.

В теориях, основанных на кровном родстве лептонов и кварков, пчелки-глюоны, перенося цветовую «пыльцу», могут сделать красный, синий или желтый цветок белым, то есть превратить его в лептон. Составная частица адрона, внутри которого произошло такое превращение — например протон, — сразу же распадется, поскольку частиц, состоящих из смеси лептонов и кварков, в природе нет. Подобной радиоактивности протона нет ни в одной другой теории, поэтому если ее обнаружат на опыте, это будет убедительным доказательством того, что лептоны и кварки — близкие родственники.

Правда, вывод о радиоактивности протона несколько пугает. Получается, что радиоактивно и с течением времени должно распасться все — все атомы мира. Оптимистической такую перспективу не назовешь!

Однако опасаться нам нечего. Расчет говорит, что протоны распадаются крайне редко. В стакане воды один распад происходит за десять тысяч лет, а чтобы распадалось по одному протону в сутки, нужен большой пруд, объемом со школьный спортзал. В теле человека за всю его жизнь, от рождения до смерти, в среднем распадается не более одного протона. Как видно, потери невелики. Пройдет неисчислимое количество лет, прежде чем убыль атомов в мире станет заметной.

Как же обнаружить такие сверхредкие события?

Прежде всего заметим, что у протона — положительный электрический заряд, поэтому при его распаде должна обязательно образоваться какая-то положительно заряженная частица, она распадается на более легкие частицы и так далее до тех пор, пока не образуется позитрон, которому распадаться больше уже не на что. Двигаясь в веществе, он столкнется с одним из атомных электронов и превратится (аннигилирует) в кванты света. Эти искорки света — сигналы о происшедших в веществе «протонных катастрофах». Засечь их труднее, чем найти иголку в стоге сена. Приходится наблюдать сразу за очень большим числом протонов, для чего используют огромные объемы прозрачной жидкости — иногда тысячи или даже десятки тысяч тонн — и много высокочувствительных детекторов света. Это можно сравнить с сетчатыми глазами гигантской стрекозы, застывшей в ожидании добычи. Чтобы исключить фон космических лучей, где есть свои позитроны, измерения выполняют глубоко под землей, например, в шахте для добычи золота в Южной Америке глубиной три километра или у нас на Кавказе в толще гор. А для того чтобы долгожданные искорки протонных распадов не затерялись в хаосе всевозможных случайных помех, применяются сложные системы электронной фильтрации регистрируемых сигналов.

Опыты продолжаются уже несколько лет, и, хотя ни одного случая распада протона до сих пор не обнаружено, физики не складывают оружия. Создаются установки еще большей величины, а некоторые из проектируемых выглядят просто фантастическими. Так, планируется строительство прибора с объемом в кубический километр. Куб со стороной, равной высоте почти двух Останкинских телевизионных башен! Такое циклопическое сооружение можно разместить лишь в толще океана или в глубоком озере, например в Байкале.

Поиск протонных распадов часто называют экспериментом века. Его успех будет веским доказательством того, что наши представления о глубинах микромира в целом правильны. Напротив, отрицательный результат прозвучит тревожным сигналом о том, что физики в чем-то крупно ошибаются, и тогда придется искать новую дорогу в недра микромира. Понятно, почему физики с таким интересом встречают все сообщения с «протонного фронта»! Да и не только физики, результат опытов очень важен также для астрономов и философов — ведь от его исхода зависят предсказания дальнейшей эволюции и судьбы окружающего нас мира.