Глава 11 Энергия и другие сохраняющиеся величины в ОТО
Глава 11
Энергия и другие сохраняющиеся величины в ОТО
Я физик и имею право на сохранение энергии.
Хуго Штейнхаус
Развитие представлений о законах сохранения
Идея сохранения появилась еще в Древней Греции в виде догадки о наличии неизменных субстанций в мире, где все меняется. Древние материалисты пришли к выводу, что материя как неуничтожима, так и нетворима, и является основой всего существующего мира. Одновременно, наблюдение изменений в природе приводит к представлению о вечном движении материи как важнейшем ее свойстве.
Эти выводы, скорее, философские. Однако были открыты и конкретные их проявления. Например, еще Архимеду было известно, что произведение силы, поднимающей груз, на длину рычага – величина постоянная. Значительно позднее, с развитием экспериментальной физики, была сформулирована в виде закона сохранения массы идея о неуничтожимости материи. Его независимо установили основоположник российской естественнонаучной школы Михаил Ломоносов (1711–1765) и французский химик Антуан Лавуазье (1743–1794), систематически применявший в химических исследованиях количественные методы.
Рис. 11.1. Маятник Галилея
Теперь обсудим простые и поучительные опыты Галилея. Исследуя падение тел по наклонной плоскости, он обнаружил, что скорость, которую имеет тело у основания наклонной плоскости, не зависит от угла ее наклона, следовательно, от длины пути, а зависит лишь от высоты, с которой падает тело. Это не могло не заинтересовать Галилея, и он продолжил исследовать проблему «наоборот». Для этого он придумал маятник, получивший его имя (рис 11.1). На плоской вертикальной доске, на нити подвешивался груз – это маятник. Если груз отвести в сторону, чтобы он был на высоте h по отношению к низшей точке и отпустить, то он, пройдя низшую точку, поднимался на ту же высоту с другой стороны.
Получается, что скорость в нижней точке тратится на то, чтобы снова подняться выше. А изменится ли эта высота, если изменить траекторию подъема? Для этого по вертикали, на пути нити, Галилей стал вбивать гвоздики на разном уровне. Тогда траектория подъема стала разной в разных случаях, как на рисунке. Однако высота груза осталась прежней – h.
Следующим исследователем, значительно продвинувшимся к открытию закона сохранения механической энергии, был нидерландский механик, физик, математик, астроном и изобретатель Христиан Гюйгенс (1629–1695). Он поставил задачу исследовать законы механического движения системы тел. Изучая колебания сложных маятников, он пришел к выводу, что если система тел приведена в движение силами тяготения, то их общий центр тяжести не может подняться выше того уровня, на котором он находился в начале движения. Заметьте – это обобщение результатов опыта Галилея!
Это вдохновило и других ученых. Лейбниц обратил внимание на то, что из законов свободного падения следует пропорциональность высоты, на которую поднимается колеблющееся тело, квадрату его скорости. Поскольку при колебании без трения высота, с которой падает тело, равна высоте поднятия, то, следовательно, сохраняется произведение mv2. В современной терминологии – это удвоенная кинетическая энергия. Лейбниц назвал это произведение «живой силой» и предложил идею, что Вселенная обладает сохраняющимся запасом «живых сил». Сохранение «живой силы» было установлено в опытах Гюйгенса с соударением шаров, где при ударе двух тел сумма произведений их масс на квадраты скоростей одинакова до и после удара.
Многие ученые уделяли внимание принципу сохранения живых сил. Из исследований упругого сжатия было ясно, что существуют состояния, которые способны отдавать живые силы, частично или полностью. Появилась уверенность, что должен быть переход живой силы в состояние упругой деформации. Однако до четкого представления о потенциальной энергии и строгой формулировки закона сохранения механической энергии со времен Лейбница пришлось ждать более 100 лет.
Мы не приводим фактов о замечательных прозрениях, когда стало ясно, что все явления в природе взаимосвязаны, и, скажем, механическая работа (а, следовательно, и энергия) может переходить в тепловую, химические явления связаны с электрическими и т. д. Мы ограничимся обсуждением механики.
Понятие потенциальной энергии в четкой форме появилось в 1847 году в книге великого немецкого физика Гельмгольца. Кинетическую энергию Гельмгольц называл по-прежнему живой силой, потенциальная энергия появилась под именем «количества сил напряжения». Здесь нужно отметить, что понятие работы (произведение силы на расстояние, на котором она действует) сложилось раньше понятия энергии. Закон сохранения энергии Гельмгольц представлял в двух формах.
Первая – обобщенная форма: количество затраченной работы равно количеству полученной энергии.
Вторая – частная – формулируется так: сумма кинетической и потенциальной энергии в замкнутой системе всегда остается постоянной.
Для измерения работы эталоном была работа поднятия груза определенной массы на определенную высоту: A = mgh. Чтобы подняться свободно на высоту h, тело должно обладать начальной скоростью v = (2gh)1/2. Такую же скорость приобретает тело, если с этой высоты упадет вниз, так происходит взаимопревращение энергии, причем mv2/2 = mgh. Таким образом, к середине XIX века были сформулированы законы сохранения массы и энергии. Они трактовались как независимые, и их смысл был в сохранении материи и движения.
Снова вернемся к временам Ньютона. Еще в своих «Началах» он ввел понятие количества движения, которое определяется как произведение массы тела на его скорость – mv. Развитие представлений о сохранении со временем этой величины, как это ни удивительно, шло независимо от представлений о живых силах. Количество движения связывалось со вторым законом Ньютона, где его изменение служило мерой действия силы. В то же самое время произведение массы на скорость рассматривалось как мера движения. Именно исходя из этих представлений, возникла идея о сохранения количества движения.
Первая формулировка принадлежит Декарту, она опубликована в его «Началах философии» в 1644 году. В его понимании закон, без сомнения, существует и его основа – теологическая: «Бог – первопричина движения, он постоянно сохраняет в мире одинаковое его количество». Декарт не дал математического выражения закона, в том смысле, что не написал соответствующих формул. Однако, благодаря ясности его определений, нужды в этом фактически нет: «Когда одна частица материи движется вдвое скорее другой, а эта последняя – вдвое по величине больше первой, то в меньшей столько же движения, сколько и в большей из частиц; и что насколько движение одной частицы замедляется, настолько же движение какой-либо иной возрастает».
Активнейшим оппонентом Декарту выступил Лейбниц. Он, увлеченный идеей живых сил, как мы уже знаем, считал, что мерой движения является не mv, а mv2, и что сохраняется только вторая, а не первая величина. Возникла путаница, которая долгое время оставалась в умах исследователей и мешала осознать соотношение законов сохранения для живых сил и количества движения.
Развитие динамики Ньютона, шаг за шагом, привело к пониманию, что сохраняются обе величины. Оказалось, что закон сохранения количества движения непосредственно связан со всеми законами механики Ньютона. Действительно, если нет внешних воздействий, то количество движения сохраняется (1-й закон); если есть определенное воздействие внешней силы, то определенным образом меняется и количество движения (2-й закон); для замкнутой системы взаимодействующих тел происходит обмен количеством движения, но поскольку взаимодействия осуществляются, следуя 3-му закону, то в результате общее количество движения сохраняется.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 27 ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС
Глава 27 ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС § 1. Локальные законы сохранения § 2. Сохранение энергии и электромагнитное поле§ 3. Плотность энергии и поток энергии в электромагнитном поле § 4. Неопределенность энергии поля § 5. Примеры потоков энергии§ 6. Импульс поля§ 1. Локальные
Глава 8 ЭЛЕКТРОСТАТИЧЕСКАЯ ЭНЕРГИЯ
Глава 8 ЭЛЕКТРОСТАТИЧЕСКАЯ ЭНЕРГИЯ §1.Электростатическая энергия зарядов. Однородный шар§2.Энергия конденсатора. Силы, действующие на заряженные проводники§З.Электростатическая энергия ионного кристалла§4.Электростатическая энергия ядра§5.Энергия в
Глава 14 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II)
Глава 14 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II) §1. Работа§2. Движение при наложенных связях§3. Консервативные силы§4. Неконсервативные силы§5. Потенциалы и поля§ 1. РаботаВ предыдущей главе мы ввели много новых понятий и идей, играющих важную роль в физике. Идеи эти столь важны,
Глава 8 ДРУГИЕ СИСТЕМЫ С ДВУМЯ состояниями
Глава 8 ДРУГИЕ СИСТЕМЫ С ДВУМЯ состояниями § 1. Молекулярный ион водорода§ 2. Ядерные силы§ 3. Молекула водорода§ 4.Молекула бензола § 5. Красители§ 6.Гамильтониан частицы со спином 1/2 в магнитном поле§ 7.Вращающийся электрон в магнитном поле§ 1. Молекулярный ион водородаВ
ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ
ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в
Глава 2. Энергия
Глава 2. Энергия Сохранение массы При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется.
ДРУГИЕ КОСМОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ
ДРУГИЕ КОСМОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ Это всего лишь пример — хотя и весьма важный — тех задач, которые мы сегодня решаем. Кроме уже описанных, в настоящее время готовится немало и других космологических экспериментов. Детекторы гравитационных волн попытаются уловить
ГЛАВА 15. ИСТИНА, КРАСОТА И ДРУГИЕ НАУЧНЫЕ ЗАБЛУЖДЕНИЯ
ГЛАВА 15. ИСТИНА, КРАСОТА И ДРУГИЕ НАУЧНЫЕ ЗАБЛУЖДЕНИЯ В феврале 2007 г. физик–теоретик и нобелевский лауреат Мюррей Гелл–Манн выступил на конференции TED («Технологии, развлечения, дизайн») в Калифорнии, где раз в год собираются лидеры науки, техники, литературы, индустрии
Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?
Глава 2. Физика. Почему одни частицы обладают массой, а другие нет? …очертанья грозные событий, Нам предстоящих… У. Шекспир. Троил и Kpeccuдa Пер. Т. Гнедич Физика занимается изучением свойств покоящейся и движущейся материи и различных видов энергии. Связанные с движением
Е. coli и другие организмы
Е. coli и другие организмы Е. coli — одно из наиболее изученных живых существ; исследователи выявили примерно две трети функций ее генов. Механизм задействования lac-оперона составляет лишь малую часть молекулярных отправлений Е. coli. Возможно, вас удивит, почему столь много
Глава 2. Е — это энергия
Глава 2. Е — это энергия Слово «энергия» на удивление молодо, проследить происхождение нынешнего его смысла удается лишь до середины 1800 годов. И дело вовсе не в том, что до той поры никто не осознавал, что вокруг нас существуют самые разные силы — потрескивание