Глава 2. Энергия
Глава 2. Энергия
Сохранение массы
При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.
С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется. А что происходит с третьей величиной — массой? Если наблюдать некоторые явления эпизодически, покажется, что существуют явные доказательства несохранения массы. Дерево сгорает, оставляя после себя пепел, имеющий гораздо меньшую массу. Большая часть массы дерева как бы исчезает. Если полностью сжечь свечу, масса ее тоже исчезнет. С другой стороны, если кусок железа полностью съедает ржавчина, образовавшаяся масса значительно больше первоначальной. Кажется, что масса возникла из ничего. Но масса — неотъемлемое свойство вещества, иметь одно без другого нельзя, следовательно, процессы сгорания или ржавления можно считать доказательством исчезновения или появления вещества.
Однако закон сохранения массы нельзя проверить в открытой системе. Мы обнаружили это, когда пытались объяснить поведение бильярдного шара, отскакивающего от борта, не принимая в расчет изменение импульса самого стола.
Ясно, что сгоревшее бревно, свеча или съеденное ржавчиной железо представляют собой открытую систему, так как на них сильно воздействует окружающая среда. По мере сгорания бревна или свечи возникают газы и пары, которые смешиваются с атмосферой Земли. Конечно, следует также рассмотреть их массу, прежде чем сделать какие-нибудь выводы о сохранении массы. Процесс ржавления гораздо более тонкий. По-видимому, некоторая часть воздуха соединяется в процессе ржавления с железом, следовательно, надо учесть массу воздуха прежде чем решить, сохраняется масса или нет.
Вплоть до XVIII столетия химики обычно неправильно оценивали материальную природу воздуха и газов. Они считали, что газы не имеют массы или она очень мала и ею можно пренебречь. Тем не менее XVIII век стал свидетелем грандиозных работ по исследованию свойств газов. Стало ясно, что при рассмотрении некоторых явлений нельзя не учитывать газы. Перелом наступил с появлением теории французского химика Антуана Лавуазье, который описал свои выводы в учебнике химии, опубликованном в 1789 году [4].
Химические реакции сгорания и ржавления Лавуазье провел в закрытых сосудах, из которых не испарялись газы и в которые не проникал воздух. Масса не могла ни проникнуть в систему, ни выйти из системы, которая была таким образом замкнута. Лавуазье взвесил сосуд с eё содержимым до и после реакции. При той точности, которую обеспечивали измерительные приборы, он не обнаружил изменения массы. Его результаты подтвердили другие экспериментаторы, которые использовали все более и более точные методы измерения массы. Измерения, сделанные в самом начале XX столетия, показали, что масса остается постоянной, по крайней мере с точностью до стомиллионной.
Итак, Лавуазье установил закон сохранения массы или, как его иногда называют, закон сохранения вещества.
Масса отличается от других «сохраняющихся» величин одним важным свойством. Импульс и момент количества движения — векторные величины, т. е. величины, имеющие направление. Импульс бывает направлен вперед или назад; момент количества движения — по часовой или против часовой стрелки. Это означает, что импульс одной части системы скомпенсируется противоположным импульсом другой части системы. Поэтому импульс в одной части системы получают путем создания противоположного импульса в другой ее части. Следовательно, при сохранении импульса или момента количества движения мы должны иметь дело с суммарными величинами, полученными путем алгебраического сложения всех положительных и отрицательных значений.
Однако масса — скалярная величина, т. е. величина, которая характеризует количество, но не имеет направления. Одно тело бывает тяжелее другого, но нет такого понятия положительной и отрицательной массы, которые могут погасить друг друга. Чтобы получить общую массу системы, надо только сложить массы частей, составляющих ее, не заботясь об их знаке. Точнее говорить не о суммарной, а о полной массе.
Закон сохранения массы формулируют следующим образом: полная масса замкнутой системы остается постоянной.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 27 ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС
Глава 27 ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС § 1. Локальные законы сохранения § 2. Сохранение энергии и электромагнитное поле§ 3. Плотность энергии и поток энергии в электромагнитном поле § 4. Неопределенность энергии поля § 5. Примеры потоков энергии§ 6. Импульс поля§ 1. Локальные
Глава 8 ЭЛЕКТРОСТАТИЧЕСКАЯ ЭНЕРГИЯ
Глава 8 ЭЛЕКТРОСТАТИЧЕСКАЯ ЭНЕРГИЯ §1.Электростатическая энергия зарядов. Однородный шар§2.Энергия конденсатора. Силы, действующие на заряженные проводники§З.Электростатическая энергия ионного кристалла§4.Электростатическая энергия ядра§5.Энергия в
Глава 14 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II)
Глава 14 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II) §1. Работа§2. Движение при наложенных связях§3. Консервативные силы§4. Неконсервативные силы§5. Потенциалы и поля§ 1. РаботаВ предыдущей главе мы ввели много новых понятий и идей, играющих важную роль в физике. Идеи эти столь важны,
ЭНЕРГИЯ БУДУЩЕГО
ЭНЕРГИЯ БУДУЩЕГО В нашем распоряжении есть три главных источника жизнеобеспечивающей энергии — топливо, водяная энергия и тепло солнечных лучей. Инженеры часто говорят о покорении энергии приливов, но обескураживающая правда состоит в том, что приливная вода на один
Глава 2. Энергия
Глава 2. Энергия Сохранение массы При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется.
Энергия Солнца
Энергия Солнца Момент количества движения приводит в затруднение, когда мы пытаемся объяснить далекое прошлое Солнечной системы, но в настоящее время нет никаких доказательств, что момент количества движения Солнечной системы не сохраняется. Однако, когда открыли
Ядерная энергия
Ядерная энергия Представление об атоме, возникшее в начале XIX столетия, позволило по-новому ответить на вопрос об источнике солнечной энергии. Почти тотчас же внимание физиков было направлено на третью альтернативу, упомянутую ранее. Атомы элемента урана (а также другого
Энергия β-частицы
Энергия ?-частицы Если все выводы, сделанные для ?-частиц, были бы применимы к ?-частицам и выполнялись бы рассмотренные энергетические соотношения, все образующиеся при распаде ядер ?-частицы обладали бы одной и той же кинетической энергией. Однако еще в 1900 году создалось
Глава 11 Энергия и другие сохраняющиеся величины в ОТО
Глава 11 Энергия и другие сохраняющиеся величины в ОТО Я физик и имею право на сохранение энергии. Хуго Штейнхаус Развитие представлений о законах сохранения Идея сохранения появилась еще в Древней Греции в виде догадки о наличии неизменных субстанций в мире, где все
ЭНЕРГИЯ ИЛИ БОМБА?
ЭНЕРГИЯ ИЛИ БОМБА? 2.34. Предполагавшиеся военные преимущества урановых бомб внешне значительно эффектнее, чем преимущества использования урана в качестве источника энергии. Очевидно, что небольшое число урановых бомб может сыграть решающую роль в выигрыше войны
ЭНЕРГИЯ
ЭНЕРГИЯ За единицу энергии в ядерной физике принят электрон-вольт (eV), который определяется как кинетическая энергия, которую частица с зарядом электрона приобретает при свободном движении в поле с падением потенциала в один вольт. Часто удобнее применять в миллион раз
Глава 2. Е — это энергия
Глава 2. Е — это энергия Слово «энергия» на удивление молодо, проследить происхождение нынешнего его смысла удается лишь до середины 1800 годов. И дело вовсе не в том, что до той поры никто не осознавал, что вокруг нас существуют самые разные силы — потрескивание
Энергия тяготения
Энергия тяготения На простом примере мы уже познакомились с энергией тяготения. Тело, поднятое на высоту h над землей, обладает потенциальной энергией mgh.Однако этой формулой можно пользоваться лишь тогда, когда высота h много меньше радиуса Земли.Энергия тяготения –
XVI. Энергия вокруг нас
XVI. Энергия вокруг нас Как превратить энергию в работу Человеку нужны машины, для этого надо уметь создавать движение – двигать поршни, вращать колеса, тянуть вагоны поезда. Движение машин требует работы. Как получить ее?Казалось бы, этот вопрос мы уже обсуждали; работа