9 НАИТИЕ

We use cookies. Read the Privacy and Cookie Policy

9 НАИТИЕ

глава, в которой астрономы оказываются вынужденными признать, что в ядрах галактик могут находиться непредсказанные черные дыры, в миллионы раз массивнее Солнца

Радиогалактики

Если бы в 1962 г. (когда физики-теоретики только начинали свыкаться с концепцией черных дыр) кто-нибудь заявил, что во Вселенной существуют гигантские черные дыры в миллионы и миллиарды раз более тяжелые, чем наше Солнце, астрономы его бы просто осмеяли. Тем не менее, не зная о том, астрономы наблюдали такие черные дыры с помощью радиоволн, начиная с 1939 г. По крайней мере, сегодня мы имеем все основания подозревать, что это так.

Радиоволны являются противоположностью рентгеновским лучам. Рентгеновское излучение — это электромагнитные волны с чрезвычайно короткой длиной волны, обычно в 10000 раз меньше, чем длина волны света (рис. П.2 в Прологе). Радиоволны также имеют электромагнитную природу, но имеют много большую длину волны — обычно расстояние от одной пучности до другой составляет несколько метров, что в миллион раз больше, чем длина волны видимого света. Рентгеновские лучи и радиоволны противоположны друг другу и с точки зрения корпускулярно-волнового дуализма (Врезка 4.1) — склонности электромагнитных волн вести себя то подобно волне, а то подобно частице-корпускуле (фотону). Рентгеновское излучение обычно ведет себя как поток частиц (фотонов) с высокой энергией, и поэтому его можно обнаружить с помощью счетчиков Гейгера, в которых рентгеновские фотоны ударяются об атомы, выбивая из них электроны (глава 8). Радиоволны почти всегда ведут себя как волны электрической и магнитной силы, и поэтому их проще всего обнаруживать с помощью проволочных или сплошных металлических антенн, в которых колебания электрической силы волн толкают электроны в разные стороны и, тем самым, вызывают переменный ток в присоединенном к антенне радиоприемнике.

Космические радиоволны (радиоволны, имеющие внеземное происхождение) были по счастливой случайности открыты в 1932 г. Карлом Янски, радиоинженером из Лаборатории Белл Телефон в Хомделе, в Нью-Джерси. Молодому выпускнику колледжа Янски поручили идентифицировать шумы, мешавшие телефонным разговорам с Европой. В то время телефонные разговоры через Атлантику осуществлялись с помощью радио, и поэтому для поиска таких шумов Янски сконструировал из большого числа металлических труб специальную радиоантенну (рис. 9.1а). Большая часть шумов вызывалась грозами, но даже когда гроз не было, оставались слабое постоянное шипение и свист. К 1935 г. ему удалось обнаружить источник шипения — в основном, оно приходило из центральных областей нашей галактики, Млечного Пути. Когда центральные области находились над головой, шипение было сильным, когда же скрывались за горизонтом, шипение ослаблялось, хотя и не пропадало совсем.

Это было любопытное открытие. Каждый, кто хоть раз задумывался о радиоизлучении космоса, мог ожидать, что самым сильным источником радиоволн на небе является Солнце, точно так же, как оно является самым ярким источником света. Кроме того, Солнце в миллиард (109) раз ближе к нам, чем большинство других звезд Млечного Пути, и потому его радиоволны должны быть примерно в 109х109=1018 раз мощнее, чем от других звезд. Поскольку в нашей галактике всего 1012 звезд, Солнце должно быть ярче, чем все остальные звезды вместе взятые примерно в 10|8/1012 = 106 (миллион) раз. Почему этот аргумент оказывается ошибочным? Каким образом радиоволны, приходящие из удаленных центральных областей Млечного Пути, могут быть настолько сильнее радиоволн от близкого Солнца?

Как бы занимательна не была эта загадка, ретроспективно еще более занятным является то, что астрономы практически не обратили на нее внимания. Фактически, несмотря на широкую рекламу со стороны телефонной компании Белл, лишь два астронома проявили интерес к открытию Янски. Консерватизм астрономов обрекал его на забвение, как и в случае с Чандрасекаром, когда он заявлял, что не могут существовать белые карлики большие 1,4 солнечной массы (глава 4).

Двумя исключениями из такого всеобщего равнодушия были дипломник Джесси Гринштейн и лектор астрономического факультета Гарвардского университета Фред Уиппл. Гринштейн и Уиппл, проанализировав открытие Янски, показали, что если бы общепринятые в то время гипотезы о способах излучения радиоволн в космосе были верны, наблюдавшееся Янски радиоизлучение Млечного Пути было бы невозможно. Несмотря на эту очевидную невозможность, Гринштейн и Уиппл поверяли наблюдениям Янски, они были уверены, что проблема кроется в астрономической теории, а не в Янски. Но так как не было никаких намеков на то, где теория становится неверна, и поскольку, как вспоминает Гринштейн: «Я ни разу не встретил [в 1930-х] кого-то, кто проявил бы интерес к данному вопросу, ни одного астронома», — ученые переключили свое внимание на другие проблемы.

К 1935 г. (примерно к тому времени, когда Цвикки придумал свою концепцию нейтронных звезд, глава 5) Янски узнал о галактическом шипении все, что могла дать его примитивная антенна. Желая знать больше, он предложил Лаборатории Бела Телефон соорудить первый в мире настоящий радиотелескоп — огромную миску диаметром 100 футов (30 метров), отражающую приходящие радиоволны на радиоантенну и приемник, так же как оптический телескоп-рефлектор отражает своим зеркалом свет на фотопластинку. Бюрократы компании Белл отвергли предложение — оно не несло выгоды. Янски, как хороший работник, подчинился. Он свернул свои исследования неба и в преддверии надвигающейся второй мировой войны обратил свои усилия на коротковолновую радиосвязь.

* * *

Профессиональные ученые настолько мало интересовались открытием Янски, что единственным построившим радиотелескоп за все следующее десятилетие оказался Грот Ребер — эксцентричный холостяк и радиолюбитель из Уиттона, штат Иллинойс (позывной W9GFZ). Прочитав о радиошумах Янски в журнале Популярная астрономия, Ребер решил в них детально разобраться. У Ребера не было научного образования, но это ничего не значило. Что действительно имело значение, так это его большой технический опыт и хорошая практическая жилка. Проявив невероятную изобретательность, он на собственные скромные сбережения разработал и построил своими руками на заднем дворе родительского дома первый в мире радиотелескоп — тарелку диаметром в 30 футов (около 9 метров) (рис. 9.1 в) и с его помощью нарисовал карты неба в радиодиапазоне (рис. 9.1 г). На этих картах можно отчетливо видеть не только центральные области нашей галактики Млечный Путь, но и два других радиоисточника, впоследствии получивших имена Cyg А и Cas А — «А» означает «самые яркие радиоисточники», a Cyg и Cas означают, что они расположены в созвездиях Cygnus (Лебедь) и Cassiopeia (Кассиопея). Четыре десятилетия исследовательской работы, в конце концов, с большой вероятностью покажут, что Cyg А и многие другие радиоисточники, открытые в последующие годы, обусловлены гигантскими черными дырами.

9.1. (а) Карл Янски рядом с антенной, с помощью которой он в 1932 г. открыл радиоизлучение нашей галактики, (б) Грот Ребер, около 1940 г. (в) Первый в мире радиотелескоп, построенный Гротом Ребером на заднем дворе дома своей матери в Уиттоне, штат Иллинойс, (г) Карта радиоизлучения неба, построенная Ребером с помощью своего дворового радиотелескопа, [(а) Фото Лаборатории Белл Телефон, предоставлено архивом видеоматериалов Эмилио Сэгре AIP; (б) и (в) предоставлено Гротом Ребером; (г) адаптация работы Грота Ребера (1944)]

История этих исследований и будет центральной линией этой главы. Я решил посвятить этому рассказу целую главу по нескольким причинам.

Во-первых, она иллюстрирует способ, каким обычно делаются астрономические открытия, отличный от показанного в предыдущих главах (глава 8). В главе 8 Зельдович и Новиков предложили конкретный метод поиска черных дыр; физики-экспериментаторы, астрономы и астрофизики воспользовались им и были вознаграждены. В этой главе гигантские черные дыры, наблюдаются Ребером еще в 1939 г., задолго до того, как кто-либо подумал заняться их поиском, но понадобится еще сорок лет, чтобы собрать данные наблюдений, вынудившие астрономов признать, что черные дыры — это действительно то, что они наблюдают.

Во-вторых, глава 8 рассказывала о силе астрофизиков и релятивистов, эта глава показывает пределы их возможностей. Существование типов черных дыр, открытых в главе 8, было предсказано за четверть века до того, как кто бы то ни было начал их искать. Это были черные дыры Оппенгеймера — Снайдера, в несколько раз массивнее Солнца, образующиеся при схлопывании больших звезд. И наоборот, теоретиками никогда не предсказывалось существование гигантских черных дыр. В тысячи или даже миллионы раз более массивных, чем любая из когда-либо наблюдавшихся астрономами на небе звезд, они, видимо, не могут образовываться посредством их схлопывания. Любой теоретик, предсказывая такие гигантские черные дыры, рисковал бы своей научной репутацией. Открытие таких черных дыр было сделано по чистому наитию.

В-третьих, рассказ об открытии в этой главе проиллюстрирует, даже более ясно, чем предыдущая глава, сложные взаимосвязи и взаимодействия между четырьмя научными группами: релятивистами, астрофизиками, астрономами и физиками экспериментаторами.

В-четвертых, как выяснится позднее в этой главе, вращение вокруг своей оси гигантских черных дыр и энергия этого вращения играют главную роль в объяснении наблюдаемого радиоизлучения. И наоборот, вращение черных дыр не имело никакого значения для наблюдаемых свойств скромных черных дыр главы 8.

* * *

В 1940 г., построив первую карту радиоизлучения неба, Ребер сделал тщательное техническое описание своего телескопа, измерений и самой карты и послал его по почте Субраманьяну Чандрасекару, который в то время являлся редактором журнала Astrophysical Journal, издаваемого Йеркесской обсерваторией Чикагского университета, расположенной на берегу озера Женева в штате Висконсин. Чандрасекар распространил замечательную рукопись Ребера среди астрономов Йеркеса. Озадаченные статьей абсолютно неизвестного любителя, некоторые из скептически настроенных астрономов направились в городок Уиттон в Иллинойсе, чтобы взглянуть на инструмент собственными глазами. Назад они вернулись потрясенными. Чандрасекар одобрил публикацию рукописи.

Джесси Гринштейн, ставший астрономом в Йеркесе по окончании Гарварда, в последовавшие несколько лет еще не раз ездил в Уиттон и стал близким другом Ребера. Гринштейн описывает Ребера как «идеал американского изобретателя. Если бы он не интересовался астрономией, он заработал бы миллион долларов».

Исполненный энтузиазма относительно работ Ребера, Гринштейн попробовал, спустя несколько лет взять его в Университет Чикаго. «Университет ни цента не хотел тратить на радиоастрономию», — вспоминает он. Директор Университетской Йеркесской обсерватории Отто Струве согласился взять Ребера на место исследователя, но при условии, что деньги в оплату его работы и в поддержку исследований будут идти из Вашингтона. Однако Ребер «был независимым малым», — говорит Гринштейн. Он отказывался подробно объяснять бюрократам, как будут потрачены деньги на новые телескопы. Дело провалилось.

Тем временем закончилась вторая мировая война, и ученые, занимавшиеся военно-технической деятельностью, начали искать для себя новые поприща. Среди них были и физики-экспериментаторы, разрабатывавшие во время войны радары для слежения за вражескими самолетами. Поскольку работа радара основана на посылке радиоволн передатчиком, подобным радиотелескопу, отражении радиоволн от самолета и приеме вернувшихся волн, эти физики-экспериментаторы идеально подходили, чтобы дать жизнь новой области — радиоастрономии, и многим из них не терпелось взяться за дело, ведь это была интересная огромная техническая задача, и интеллектуальный выход выглядел многообещающим. Среди многих, приложивших руку к этой проблеме, три группы быстро заняли доминирующее положение: группа Бернарда Ловелла в Джодрелл Бэнк, Манчестерского университета в Англии; группа Мартина Райля из Кембриджского университета в Англии и объединенная группа Дж. Л. Поуси и Джона Болтона в Австралии. В Америке было мало усилий, заслуживающих упоминания; Грот Ребер продолжал свои радиоастрономические исследования практически в одиночестве.

Оптические астрономы (т. е. астрономы, изучающие небо с помощью света[91], единственный тип астрономов, существовавший в те дни) почти не обратили внимания на лихорадочную деятельность физиков-экспериментаторов. Они будут оставаться равнодушными, пока радиотелескопы не будут в состоянии измерять положение источника на небе с такой точностью, чтобы можно было судить, какой светящийся объект излучает радиоволны. Это потребовало 100-кратного увеличения разрешения по сравнению с достигнутой Ребером, т. е. 100-кратного улучшения точности, с которой измеряются положение, размер и форма радиоисточников. Подобное улучшение было непростой задачей. Оптический телескоп или даже невооруженный человеческий глаз может легко достичь хорошего разрешения, поскольку волны, с которыми он «работает» (световые), имеют очень малую длину волны, меньше чем 10-6 метра. И наоборот, ухо человека не может очень точно определить, откуда исходит звук, поскольку звуковые волны имеют большую длину волны, около метра. Точно так же и радиоволны метрового размера дают плохое разрешение до тех пор, пока вы не будете использовать телескоп размерами во много раз больший метра. Телескоп Ребера был не слишком велик, и поэтому имел скромное разрешение. Чтобы достичь 100-кратного улучшения разрешения, нужен был телескоп в 100 раз большего размера, примерно в 1 км, и/или использование более коротковолнового радиоизлучения с длиной волны несколько сантиметров вместо одного метра.

9.2. Принцип работы радиоинтерферометра. Слева: Чтобы получить хорошее угловое разрешение, нужен огромный, размером порядка 1 км, радиотелескоп. Однако при этом оказывается достаточным, чтобы лишь несколько пятен на тарелке были действительно покрыты металлом и отражали радиоволны. Справа: Вовсе не обязательно, чтобы радиоволны, отраженные от таких пятен, фокусировались на антенне и приемнике в центре огромной антенны. Каждое пятно может фокусировать свои радиоволны на своей антенне и приемнике, а результирующие радиосигналы ото всех приемников могут быть затем по проводам переданы на центральную приемную станцию, где они объединяются таким же образом, как и в случае приемника гигантского телескопа. В результате получается сеть маленьких радиотелескопов со связанными и объединенными выходами — радиоинтерферометр

100-кратного улучшения чувствительности физикам-экспериментаторам удалось добиться уже к 1949 г., но не методом грубой силы, а с помощью хитрости. Ключом к пониманию этой хитрости может быть аналогия с чем-то совершенно простым и хорошо знакомым. (Это лишь аналогия, фактически, здесь есть небольшой обман, но она дает представление об общей идее.) Мы, люди, можем видеть трехмерность окружающего нас мира, используя только два глаза. Левый глаз видит чуть больше за объектом с левой стороны, а правый немного больше справа. Если мы наклоним голову, мы сможем видеть немного больше за объектом сверху и снизу; а если бы мы могли разнести наши глаза на еще большее расстояние (как это делается с помощью двух кинокамер для съемки стереофильмов с утрированной трехмерностью), мы бы смогли видеть еще больше всего за объектом. Однако наше стереоскопическое видение сильно не улучшилось бы, имей мы огромное количество глаз, полностью покрывающих наши лица. С помощью дополнительных глаз мы бы видели все гораздо отчетливее (имели бы лучшую чувствительность), но немного бы выиграли в трехмерном разрешении.

Километровый телескоп (левая часть рис. 9.2) будет чем-то вроде лица, плотно покрытого глазами. Он будет состоять из километровой тарелки, покрытой листами металла, отражающими и фокусирующими радиоволны на проволочную антенну и приемник. Если мы уберем металлический листы везде кроме нескольких островков свободно рассеянных по поверхности тарелки, это будет то же самое, что убрать все лишние глаза с лица, оставив лишь несколько. В обоих случаях произойдет умеренное ухудшение разрешения, но большая потеря чувствительности. Физикам-экспериментаторам больше всего нужно было улучшение разрешения (им хотелось обнаружить, откуда приходят радиоволны и каков размер источников), а не повышение чувствительности (возможности видеть больше слабых радиоисточников). По-крайней мере, в то время. Поэтому они могли обойтись и пятнистой тарелкой, не полностью покрытой металлом. Чтобы сделать такую пятнистую тарелку, надо было построить сеть маленьких радиотелескопов, связанных проводами с центральной радиоприемной станцией (правая часть рис. 9.2). Каждый маленький телескоп подобен металлическому пятну в большой тарелке, провода, несущие радиосигналы от каждого телескопа к центральной приемной станции, подобны радиолучам, отраженным от пятен большой тарелки, а сама центральная приемная станция, объединяющая сигналы, приходящие по проводам, подобна центральной антенне и приемнику большой тарелки, соединяющим лучи, отраженные от пятен. Такие сети малых телескопов, ставшие главным направлением усилий экспериментаторов, получили название радиоинтерферометров, поскольку принципом их действия является интерферометрия: интерферируя выходные сигналы малых телескопов между собой, центральная приемная станция строит радиокарту или изображение неба.

* * *

С конца 40-х годов, в 50-х и в начале 60-х годов три группы физиков-экспериментаторов (в Джодрелл Бэнка, Кембридже и Австралии) соперничали в создании все более сложных радиоинтерферометров, все большего размера с постоянно улучшаемым разрешением. Первая критическая отметка — стократное улучшение разрешения, достаточное, чтобы заинтересовать оптических астрономов, была пройдена в 1949 г., когда Джон Болтон, Гордон Стенли и Брюс Сли из австралийской группы определили границы ошибок для положения нескольких радиоисточников, не превышающие 10 угловых минут, т. е. они установили области на небе размером в 10 угловых минут, в которых должны лежать радиоисточники. (Десять угловых минут составляют одну треть видимого с Земли поперечника Солнца и, таким образом, это гораздо хуже, чем разрешение, которое дает человеческий глаз в видимом свете, но это замечательное разрешение при работе с радиоволнами.) Когда эти области были исследованы с помощью оптических телескопов, в некоторых случаях, включая и область Cyg А, там ничего особенно яркого, заслуживающего внимания не оказалось. Требовалось еще лучшее разрешение, чтобы выяснить, какие из огромного числа оптически тусклых объектов в заданных границах могут быть источниками радиоволн. В трех из обозначенных границами ошибок областях, однако, оказались чрезвычайно яркие оптические объекты: остатки древней сверхновой и две удаленные галактики.

Как бы ни было трудно для астрофизиков объяснить открытые Янски испускаемые нашей собственной галактикой радиоволны, гораздо труднее было понять, каким образом такие мощные радиосигналы могут посылать отдаленные галактики. Невозможно было поверить в то, что некоторые из самых ярких радиоисточников на небе могут быть настолько удалены (хотя, в конце концов, окажется, что так оно и есть). Поэтому казалось естественным сделать ставку на то (хотя те, кто так считали, окажутся в проигрыше), что каждый из радиосигналов из очерченных областей приходит к нам не из далекой галактики, а от одной из огромного множества оптически слабых, но расположенных поблизости звезд. Только улучшение разрешения позволило бы ответить наверняка. Физики-экспериментаторы продолжали продвигаться вперед, и отдельные астрономы начали с некоторым интересом краем глаза к ним присматриваться.

Летом 1951 г. команда Райля из Кембриджа достигла очередного десятикратного улучшения разрешения, и аспирант Райля Грэм Смит этим воспользовался, чтобы очертить для Cyg А границу погрешности в 1 угловую минуту — область достаточно малая, чтобы в ней размещалось лишь порядка сотни оптических объектов (объектов, наблюдаемых с помощью света). Смит отправил авиапочтой наиболее вероятную оценку и возможную погрешность измерений известному оптическому астроному Вальтеру Бааде из Института Карнеги в Пасадене. (Тому самому Бааде, который семнадцатью годами раньше вместе с Цвикки обнаружил сверхновые и предположил, что они обязаны своей энергией нейтронным дырам, см. главу 5.) Институт Карнеги владел 2.5-метровым (100-дюймовым) оптическим телескопом на горе Вильсон, который оставался крупнейшим в мире, пока Калтех, расположенный ниже по той же улице в Пасадене, не закончил сооружение 5-метрового (200 дюймов) телескопа на горе Паломар. Астрономы Карнеги и Калтеха сообща пользовались этими телескопами. Во время очередной по графику серии наблюдений на 5-метровом паломарском телескопе (рис. 9.3а) Бааде сфотографировал очерченный район, в котором, по словам Смита, лежал Cyg А. Этот участок неба, как и многие другие до этого, ни разу не исследовался с помощью большого оптического телескопа. Когда Бааде проявил фотографию, он едва мог поверить своим глазам. В очерченном районе находился объект, не похожий ни на один из когда-либо наблюдавшихся. Казалось, что это две сталкивающиеся друг с другом галактики (в центре рис. 9.Зг). (Теперь, благодаря наблюдениям 1980-х годов, сделанным с помощью инфракрасных телескопов, мы знаем, что столкновение галактик было оптической иллюзией. На самом деле Cyg А — это одна галактика, а перед ней расположена полоса пылевого облака. Пыль поглощает свет таким образом, что единственная галактика выглядит как две сталкивающиеся.) Всю систему — центральную галактику вместе с радиоисточником впоследствии стали называть радиогалактикой.

В течение двух лет астрономы были уверены что радиоволны возникли при столкновении галактик. Затем 1953-й год преподнес другой сюрприз. Р.С.Дженнисон и М.К. Дас Гупта из группы Ловелла в Джодрелл Бэнк изучали Cyg А с помощью нового интерферометра, состоящего из двух телескопов: одного, закрепленного на земле, а другого, перемещавшегося по окрестностям на грузовике, захватывающего, таким образом, одно за другим большое число «пятен» на «тарелке» воображаемого телескопа с площадью в 4 километра (левая часть рис. 9.2). С помощью этого нового интерферометра (рис. 9.3 б, в) они обнаружили, что радиоволны Cyg А приходят не от «сталкивающихся галактик». Эти радиоизлучающие области, или лепестки, как их обычно называют, показаны в виде прямоугольников на рис. 9.3 г вместе с оптической фотографией «сталкивающихся галактик», полученной Бааде. На рисунке также дана более детальная карта радиоизлучения лепестков, построенная шестнадцатью годами позже с помощью более совершенных интерферометров; эта карта показана с помощью тонких контурных линий, изображающих яркость радиоизлучения, так же как на топографической карте с помощью контурных линий приводится высота местности. Эти контурные картины подтверждают вывод 1953 г., что радиоволны приходят от гигантских лепестков газа с двух сторон от «сталкивающихся галактик». То, как оба этих огромных лепестка могут управляться единственной гигантской черной дырой, будет основным предметом обсуждения этой главы.

* * *

Эти открытия были достаточно поразительны, чтобы возбудить устойчивый сильный интерес оптических астрономов. Джесси Гринштейн был теперь не единственным, кто обращал серьезное внимание на проблему.

9.3. Открытие удаленной радиогалактики Cyg А: (а) 5-метровый оптический телескоп, использованный Бааде и обнаруживший, что Cyg А связан с чем-то, что выглядит как две сталкивающиеся галактики, (б) Радиоинтерферометр в Джод-релл Бэнк, который в 1953 г. Дженнисон и Дас Гупта использовали для того, чтобы показать, что радиоволны приходят от двух гигантских лепестков вне сталкивающихся галактик. Две антенны интерферометра (каждая из которых была сетью проводов, натянутых на деревянную основу) показаны рядом. Во время измерения одна устанавливалась на грузовике и перемещалась по окрестностям, а другая оставалась неподвижной на земле, (в) Дженнисон и Дас Гупта изучают радиоданные в контрольной комнаты своего радиоинтерферометра. (г) Два гигантских лепестка радиоизлучения (показаны прямоугольниками), обнаруженных в измерениях 1953 г., наложены на оптическую фотографию «сталкивающихся галактик», сделанную Бааде. Также показана контурная карта лепестков с высоким разрешением, сделанная в 1969 г. в Кембридже группой Райля. [(а) Предоставлено Паломарской обсерваторией Калифорнийского технологического института; (б) и (в) предоставлено Наффилдской радиоастрономической лабораторией Манчестерского университета; (г) основано на работах Митгона и Райля (1969), Бааде и Минковского (1964), Джен-нисона и Дас Гупты (1954)]

Для Гринштейна эти открытия стали последней каплей. Не включившись в радиоволновую деятельность сразу после войны, американцы теперь стали сторонними наблюдателями величайшей со времен изобретения оптического телескопа Галилеем революции в астрономии. Эта революция теперь раздавала награды ученым Британии и Австралии, но не Америки.

Гринштейн тогда был профессором в Калтехе. Его пригласили сюда из Йеркеса для разработки программ астрономических исследований на новом 5-метровом оптическом телескопе и поэтому, вполне естественно, он отправился к президенту Калтеха, Ли ДюБриджу, и стал настаивать, чтобы Калтех начал строить свой радиоинтерферометр, который бы вместе с 5-метровым телескопом использовался для исследования удаленных галактик. Дю Бридж, который во время войны возглавлял американские радарные работы, отнесся к идее с симпатией, но был осторожен. Чтобы подтолкнуть Дю Бриджа к действию, Гринштейн организовал в Вашингтоне 5 и 6 января 1954 г. конференцию, посвященную будущему радиоастрономии.

В Вашингтоне, после того как гости из радиообсерваторий Англии и Австралии рассказали о своих замечательных открытиях, Гринштейн поставил вопрос о том: должны ли Соединенные Штаты оставаться радиоастрономической пустыней? Ответ был очевиден.

При сильной поддержке Национального Научного Фонда (NSF) американские инженеры, физики и астрономы приступили к форсированному сооружению Национальной радиоастрономической Обсерватории в Гринбэнк, в Западной Виргинии, а Дю Бридж одобрил предложение Гринштейна построить для Калтеха новейший радиоинтерферометр в Оуэнс Вэлли, в Калифорнии, к югу от Йосемитского национального парка. Поскольку в Калтехе ни у кого не было опыта в создании подобных инструментов, возглавить проект Гринштейн пригласил Джона Болтона из Австралии.

Квазары

К концу 1950-х годов американцы оказались уже вполне конкурентоспособными. Вступили в действие радиотелескопы в Гринбэнке, а в Калтехе Том Мэтьюз, Пэр Юджин Мэлтби и Алан Моффетт на новом радиоинтерферометре в Оуэнс Вэлли, работая рука об руку с Бааде, Гринштейном и другими астрономами Паломарского 5-метрового телескопа, открыли и изучили множество радиогалактик.

В 1960 г. эти усилия преподнесли еще один сюрприз: Том Мэтьюз из Калтеха узнал от Генри Палмера, что, согласно измерениям в Джодрелл Бэнк, радиоисточник по имени ЗС48 (источник № 43 в третьем издании каталога, составленного в Кембридже группой Рай-ля) имеет необычайно малый размер, не более чем 1 угловая секунда в диаметре (1/10000 углового размера Солнца). Такой крошечный источник должен был бы быть чем-то совершенно новым. Однако Палмеру и его коллегам в Джодрелл Бэнк не удалось достаточно точно локализовать положение источника. Мэтьюз, проведя ювелирную работу на новом интерферометре Калтеха, добился погрешности всего в 5 угловых секунд и передал свои данные Аллану Сандажу, оптическому астроному из Института Карнеги в Пасадене. Во время очередных наблюдений на 5-метровом телескопе Сандаж сфотографировал область, очерченную границами погрешности Мэтьюза и, к своему удивлению, обнаружил не галактику, а единственную голубую светящуюся точку, которая выглядела как звезда. «В следующую ночь я снял ее спектр, и это был самый странный спектр из тех, что я когда-либо видел», — вспоминал Сандаж. Длины волн спектральных линий были совершенно не похожи на линии звезд или горячего газа, когда-либо получаемые на Земле; они были не похожи ни на что, с чем ранее сталкивались астрономы и физики.

В следующие два года тем же способом было открыто еще с полдюжины похожих объектов, таких же загадочных, как и ЗС48. Все оптические астрономы Калтеха и Карнеги взялись за их фотографирование и снятие спектров, пытаясь понять природу этих объектов. Ответ должен бы быть очевиден, но нет, мешал ментальный барьер. Эти странные объекты выглядели настолько похожими на звезды, что астрономы все время пытались интерпретировать их как некий тип звезд нашей галактики, никогда ранее не наблюдавшихся, однако такая интерпретация была почти невероятной, ужасно искаженной.

Ментальный барьер был разрушен Маартеном Шмидтом, тридцатидвухлетним датским астрономом, недавно пришедшим в Калтех. В течение нескольких месяцев он бился над спектром, полученным от 3C273, одного из подобных странных объектов. Наконец, 5 февраля 1963 г., когда он сидел в своем кабинете в Калтехе, зарисовывая спектры для включения их в подготавливаемую статью, вдруг пришел ответ. Четыре самые яркие линии в спектре являлись четырьмя обычными «линиями Балмера», излучаемыми газообразным водородом — наиболее известными из всех спектральных линий, первыми которые студенты изучают в курсе квантовой механики. Однако эти четыре линии не имели обычных длин волн. Каждая была сдвинута в красную область на 16 %. Похоже 3C273 является объектом, содержащим большое количество газообразного водорода, удаляющимся от Земли со скоростью, составляющей 16 % скорости света — гораздо быстрее, чем любая из когда-либо наблюдавшихся астрономами звезд.

Шмидт вылетел в коридор, где столкнулся с Гринштейном и возбужденно изложил ему свое открытие. Гринштейн развернулся и направился в собственный кабинет, где выудил свой спектр ЗС48 и некоторое время рассматривал его. Балмеровские линии не обнаруживались ни при каком красном смещении, но зато здесь были и глядели на него линии излучения магния, кислорода и неона. 3C38 представлялся, по крайней мере частично, огромной массой, состоящей из магния, кислорода и неона, удаляющейся от Земли со скоростью, равной 37 % световой.

Чем вызваны такие высокие скорости? Если бы, как тогда думали, эти странные объекты (получившие позднее название квазары) являлись неким типом звезд, принадлежащих нашей галактике Млечный Путь, они должны были бы быть откуда-то извергнуты с невероятной силой, возможно, из галактического ядра. В это было невозможно поверить, и более пристальное изучение спектров квазаров показало, что это вряд так. Единственная разумная альтернатива, как (верно) предположили Гринштейн и Шмидт, заключается в том, что эти квазары находятся в нашей Вселенной очень далеко и удаляются от Земли с высокой скоростью в результате ее расширения.

Слева: Джесси Л. Гринштейн рядом с рисунком 5-метрового паломарского телескопа (около 1955 г.). Справа: Маартен Шмидт с инструментом для измерения спектра, сделанном для 5-метрового телескопа (около 1963 г.). [Предоставлено архивом Калифорнийского технологического института]

Вспомним, что расширение Вселенной подобно растяжению поверхности надуваемого воздушного шарика. Если на его поверхности находится несколько муравьев, каждый из них увидит, что все остальные муравьи в результате расширения воздушного шарика от него удаляются. Чем дальше находится другой муравей, тем быстрее он будет двигаться, на взгляд первого муравья. Точно так же, чем дальше находится объект от Земли, тем быстрее для нас он будет двигаться в результате расширения Вселенной. Другими словами, скорость объекта пропорциональна расстоянию до него. Поэтому из скоростей 3C273 и ЗС48 Шмидт и Гринштейн смогли вычислить расстояние до них: соответственно, 2 миллиарда и 4,5 миллиарда световых лет.

Это были чудовищные расстояния, практически самые большие расстояния из зарегистрированных когда-либо. Это означало, что для того чтобы 3C273 и ЗС48 имели достаточную яркость, чтобы выглядеть так, как они регистрировались с помощью 5-метрового телескопа, они должны были излучать невообразимую мощность: в 100 раз большую, чем самые яркие из наблюдавшихся галактик.

Фактически 3C273 был настолько ярким объектом, что с 1895 г. его уже больше 2000 раз регистрировали на фотографиях вместе с другими объектами даже с помощью телескопов среднего размера. Узнав об открытии Шмидта, Харлан Смит из Университета Техаса организовал более пристальное изучение этого архива фотографий, в основном хранящихся в Гарварде, и обнаружил, что у 3C273 за последние 70 лет постоянно происходили флуктуации яркости. Его светимость существенно менялась с периодом, не большим чем один месяц. Это означает, что большая часть света от 3C273 должна излучаться из области размером меньшим расстояния, преодолеваемого светом за месяц, т. е. меньшим, чем 1 «световой месяц». (Если область будет больше, то не может быть такой силы, перемещающейся, конечно, со скоростью меньшей или равной скорости света, которая могла бы заставить весь излучающий газ с месячной аккуратностью одновременно вспыхивать или тускнеть.)

Во все это было чрезвычайно трудно поверить. Этот странный квазар, этот 3C273, светил в 100 раз ярче, чем самые яркие во Вселенной галактики. Но если галактики излучают свет из областей размером в 100000 световых лет, 3C273 давал свет из области, по крайней мере, в миллион раз меньшей в диаметре и в 1018 раз меньшей по объему: всего в 1 световой месяц или даже меньше. Свет должен исходить от массивного компактного газового объекта, нагреваемого какой-то невероятно мощной машиной. Эта машина, в конце концов, с высокой, но не абсолютной достоверностью окажется гигантской черной дырой, но прочные свидетельства будут получены лишь в последующие пятнадцать лет.

* * *

Если объяснить происхождение радиоволн в нашем галактическом Млечном Пути было тяжело, а объяснить радиоизлучение от удаленных радиогалактик еще сложнее, то объяснение радиоизлучения от этих сверхдалеких квазаров могло оказаться суперсложным.

Сложность, как оказалось, опять состояла в существовании ментального барьера. Джесси Гринштейн, Фред Уиппл и все остальные астрономы 1930-х и 1940-х полагали, что космические радиоволны, так же как и звездный свет, испускаются разогретыми теплом, колеблющимися молекулами, атомами и электронами. Астрономы 30-х и 40-х годов не могли представить другого способа, как природа могла бы образовывать наблюдаемые радиоволны, даже тогда, когда все их расчеты недвусмысленно показывали, что этот работать не может.

Однако с начала XX века физикам был известен другой способ. Когда электрон, движущийся с высокой скоростью, встречает магнитное поле, магнитные силы этого поля закручивают траекторию электрона в спираль. Электрон оказывается вынужденным кружиться вокруг линий магнитного поля (рис. 9.4) и, двигаясь по спирали, испускать электромагнитное излучение. В 1940-х годах физики начали называть это излучение синхротронным излучением, поскольку оно образуется при спиральном движении электронов в ускорителях частиц, называемых «синхротронами», которые тогда строились. Замечательно, что в 1940-х годах, несмотря на заметный интерес физиков к синх-ротронному излучению, астрономы не обращали на него никакого внимания. Ментальный барьер сохранялся.

9.4. Космические радиоволны порождаются электронами, вращающимися по спирали с околосветовыми скоростями вокруг линий магнитного поля. Магнитное поле заставляет электрон двигаться не по прямой, а по спирали, при этом спиральное движение электрона порождает радиоволны

В 1950 г. Карл Отто Кипенхоер в Чикаго и Виталий Лазаревич Гинзбург в Москве (тот самый Гинзбург, который придумал LiD топливо для советской водородной бомбы и обнаружил первые свидетельства, что черные дыры не могут иметь «волос»[92]) разрушили этот ментальный барьер. Развивая плодотворные идеи Ганса Альфвена и Николаи Херлофсона, Кипенхоер и Гинзбург (верно) предположили, что радиоволны Янски в нашей галактике являются синхротронным излучением электронов, движущихся по спирали вокруг линий магнитных силовых линий, заполняющих межзвездное пространство (рис. 9.4).

Спустя несколько лет, когда будут открыты гигантские радиоизлучающие лепестки радиогалактик и квазары, было также вполне естественно (и правильно) предположить, что их радиоизлучение также вызывается электронами, вращающимися вокруг силовых линий магнитного поля. Исходя из физических законов, описывающих такое спиральное движение, и свойств наблюдаемых радиоволн, Джеффри Бэрбидж из Университета Калифорнии, в Сан Диего, рассчитал, какую энергию должны иметь магнитные поля лепестков и быстро вращающиеся электроны. Вот его поразительный ответ: в экстремальных случаях радиоизлучающие лепестки должны заключать в себе такое количество магнитной энергии и кинетической энергии быстрых электронов, которое можно получить при превращении в чистую энергию всей массы 10 миллионов (107) Солнц со 100 %-ной эффективностью.

* * *

Такие энергетические характеристики квазаров и радиогалактик были настолько поразительными, что в поисках объяснения астрофизикам в 1963 г. пришлось перебрать все мыслимые источники энергии.

Химическая энергия (горение бензина, нефти, угля или динамита), которая является основой человеческой цивилизации, явно не подходила. Химическая эффективность преобразования вещества в массу составляет лишь одну стомиллионную долю (одна часть на 108). Для того чтобы обеспечить энергией радиоизлучающий газ квазара, потребовалось бы 108 х 107 = 1015 солнечных масс химического горючего — в 10000 раз больше, чем количество вещества, содержащегося в нашей галактике Млечный Путь. Это совершенно бессмысленно.

Ядерная энергия, работающая в водородной бомбе и дающая солнечный свет и тепло, также плохо подходила для питания квазара. Эффективность преобразования массы в энергию для ядерного горючего составляет примерно 1 процент (1 часть на 102), поэтому квазару, для того чтобы подпитывать радиоизлучение лепестков, понадобилось бы 102 х 107 = 109 (1 миллиард) солнечных масс. И этот миллиард соответствует тому случаю, когда ядерное топливо полностью выгорает и освобождающаяся энергия полностью преобразуется в энергию магнитного поля и быстрых электронов. Полное сгорание и полное преобразование энергии вызывало сомнение. Даже в тщательно сконструированных машинах человеку редко удается добиться эффективности преобразования энергии ядерного топлива в полезную мощность лучшей нескольких процентов, а в природе могло быть еще хуже. Поэтому более разумной является оценка в 10 или 100 миллиардов звезд. Это меньше, чем масса гигантской галактики, но не намного, и то, как природа могла бы добиться преобразования ядерной энергии в магнитную и кинетическую, было совершенно неясно. Поэтому ядерная энергия была возможной, но очень сомнительной кандидатурой.

Аннигиляция вещества и антивещества могла бы обеспечить 100-процентное преобразование массы в энергию, и поэтому 10 миллионов солнечных масс, аннигилирующих с 10 миллионами солнечных масс из антивещества, могли бы удовлетворить энергетические потребности квазаров. Однако нет никаких доказательств существования во Вселенной антивещества, кроме малых его крох, искусственно синтезированных человеком в ускорителях и той малости, которая возникает в природе при столкновении частиц обычного вещества. Более того, даже если бы такие большие массы вещества и антивещества аннигилировали, энергия их аннигиляции превратилась бы в гамма-излучение, а не в энергию магнитного поля или кинетическую. Поэтому аннигиляция вещества с антивеществом оказывается неудовлетворительным источником энергии для квазара.

Оставалась еще одна возможность: гравитация. схлопывание обычной звезды с образованием нейтронной звезды или черной дыры, казалось, вполне могло преобразовать 10 процентов массы в магнитную и кинетическую энергии — хотя, как это точно происходит, ясно не было. Если это возможно, то схлопывание 10 х 107 = 108 (100 миллионов) обычных звезд могло бы обеспечить квазар энергией, так же, впрочем, как и схлопывание одной гипотетической в 100 миллионов раз более тяжелой, чем Солнце, сверхмассивной звезды. [Правильная идея, состоящая в том, что гигантская черная дыра, получившаяся при схлопывании такой сверхмассивной звезды, может сама служить источником энергии для квазара, никому не приходила в голову вплоть до 1963 г. Черные дыры тогда еще плохо понимали. Уилер еще не пустил в оборот выражение «черная дыра» (глава 6). Салпетер и Зельдович еще не поняли того, что газ, падающий на черную дыру, может нагреваться и с высокой эффективностью излучать энергию (глава 8). Пенроуз еще не открыл, что черная дыра может до 29 процентов своей массы копить в энергии вращения и затем ее высвобождать (глава 7). Золотой век исследований черных дыр еще не начался.]

Мысль о том, что квазары могут получать энергию от схлопывающейся звезды, образующей черную дыру, была радикальным отходом от традиционных представлений. Впервые в истории астрономы и астрофизики почувствовали необходимость обратиться для объяснения наблюдаемых объектов к общей теории относительности. Раньше релятивисты жили в одном мире, а астрономы и астрофизики в другом, почти не связанные друг с другом. Эта разъединенность подходила к концу.

Для стимулирования диалога между релятивистами, астрономами и астрофизиками и катализации прогресса в исследовании квазаров с 16 по 18 декабря 1963 г. в Далласе, в Техасе, была организована конференция, в которой приняли участие триста ученых. Томас Голд из Корнельского университета так полушутя обрисовал в тосте на банкете обстановку на этом Первом техасском симпозиуме по релятивистской астрофизике: «[Загадка квазаров] позволяет предположить, что вычурные работы релятивистов являются не только великолепными культовыми украшениями, но могут быть действительно полезны для науки! Все довольны: релятивисты, почувствовавшие, что их оценили, стали экспертами в области, о существовании которой они вряд ли знали, и астрофизики, поскольку теперь они могут расширить свое поле деятельности, свою империю, вторгаясь в другую епархию — общую теорию относительности. Все это очень приятно, и потому давайте думать, что все это верно. Каким позором для нас будет, если нам придется снова пойти на увольнение всех релятивистов».

Выступления следовали почти непрерывно с 8:30 утра до 6 вечера с часовым перерывом на обед, плюс почти все время с 6 вечера до двух часов ночи проходило в неформальных дискуссиях и спорах. Среди других выступлений проскочило и короткое 10-минутное сообщение молодого новозеландского математика Роя Керра, неизвестного другим участникам. Керр только что обнаружил свое решение уравнений поля Эйнштейна — решение, которое, как окажется десятилетием позже, позволит описать все свойства вращающихся черных дыр, включая запасание и высвобождение вращательной энергии (главы 7 и 11); решение, которое, как мы увидим позднее, в конечном итоге заложит фундамент для объяснения происхождения энергии квазаров. Однако в 1963 г. решение Керра большинству ученых казалось лишь математическим курьезом; никто даже не знал, что оно описывает черную дыру, хотя Керр и рассуждал о том, что оно может дать представление о схлопывании вращающихся звезд.

Астрономы и астрофизики приехали в Даллас обсуждать квазары; их не интересовали эзотерические математические изыски Керра. Поэтому, как только Керр начал свое выступление, многие выскользнули из конференц-зала, чтобы в фойе поспорить друг с другом о своих любимых теориях квазаров. Многие другие решили вздремнуть, тщетно пытаясь восполнить дефицит сна из-за ночных научных бдений. Лишь горстка релятивистов пристально вслушивалась в каждое слово.

Это было больше, чем мог вынести Ахилл Папапетроу, один из ведущих мировых релятивистов. Как только Керр закончил, Папапетроу потребовал слова, встал и с глубоким чувством объяснил собравшимся важность работы Керра. В течение 30 лет Папапетроу пытался найти решение уравнений Эйнштейна, но, как и многим другим релятивистам, ему это сделать не удалось. Астрономы и астрофизики вежливо кивали, но затем, как только следующий оратор начал развивать свои теории о квазарах, переключили свое внимание на него и все пошло своим чередом.

* * *

1960-й год стал поворотной точкой в изучении радиоисточников. Ранее в исследованиях полностью доминировали астрономы-наблюдатели, т. е. оптические астрономы, и наблюдающие за радиоизлучением физики-экспериментаторы, которые теперь влились в семью астрономов и назывались радиоастрономами. Астрофизики-теоретики, наоборот, вносили в исследования небольшой вклад, поскольку радионаблюдения были еще недостаточно точны, чтобы существенно влиять на их теории. Их единственный вклад состоял в том, что они поняли, что радиоволны производятся высокоскоростными электронами, вращающимися вокруг магнитных силовых линий гигантских радиоизлучающих лепестков, и в том, что они смогли рассчитать, сколько магнитной и кинетической энергии на это требуется.