ХРОНОЛОГИЯ

We use cookies. Read the Privacy and Cookie Policy

ХРОНОЛОГИЯ

Хронология событий, озарений, открытий

1687 Ньютон публикует свои «Принципы натуральной философии», где сформулированы понятия абсолютного пространства и времени, а также законы движения и законы гравитации. [Гл.1]

1783 и 1795 Митчелл и Лаплас формулируют понятие «черной дыры» на основе ньютоновских законов движения и гравитации. [Гл. З]

1864 Максвелл формулирует единые законы электромагнетизма. [Гл.1]

1887 Майкельсон и Морли экспериментально показывают, что скорость света не зависит от скорости движения Земли в пространстве. [Гл.1]

1905 Эйнштейн показывает, что пространство и время не абсолютны, а относительны, и формулирует законы теории относительности. [Гл.1] Эйнштейн показывает, что в определенных условиях электромагнитные волны ведут себя как частицы, т. е. фактически вводит понятие корпускулярно-волнового дуализма, лежащее в основе квантовой механики. [Гл.4]

1907 Эйнштейн делает свои первые шаги к общей теории относительности: формулирует понятие локально инерциальной системы отсчета и принцип эквивалентности, приходит к идее замедления времени в гравитационном поле. [Гл.2]

1907 Герман Минковский объединяет пространство и время в абсолютное четырехмерное пространство-время. [Гл.2]

1912 Эйнштейн осознает, что пространство-время искривлено и что приливная гравитация — следствие этой кривизны. [Гл.2]

1915 Эйнштейн и Гильберт независимо формулируют уравнение поля (описывающее искривление пространства-времени под действием массы) и завершают таким образом создание законов общей теории относительности. [Гл.2]

1916 Карл Шварцшильд получает решение уравнения поля Эйнштейна, которое впоследствии используется для описания невращающейся и незаряженной черной дыры. [Гл. З]

Фламм открывает, что при определенном выборе топологии решение Шварцшильда для уравнения Эйнштейна может описывать пространственную нору («кротовую нору»). [Гл.14]

1916 и 1918 Райсснер и Нордстрем предлагают свое решение уравнения поля Эйнштейна, которое впоследствии будет использовано для описания невращающейся заряженной черной дыры. [Гл.7]

1926 Эддингтон формулирует «загадку» белых карликов и отвергает возможность существования черных дыр. [Гл.4]

Шредингер и Гейзенберг окончательно формулируют законы квантовой механики. [Гл.4]

На основе законов квантовой механики Фаулер показывает, как вырождение электронов помогает разрешить «загадку» белых карликов. [Гл.4]

1930 Чандрасекар находит предел массы для белых карликов. [Гл.4]

1932 Чэдвик открывает нейтрон. [Гл.5]

Янски открывает космические радиоволны. [Гл.9]

1933 Ландау создает в СССР научно-исследовательскую группу теоретической физики. [Гл.5, 13]

Бааде и Цвикки начинают заниматься исследованием Сверхновых, вводят понятие нейтронной звезды и предлагают гипотезу об образовании нейтронной звезды из звездного ядра в результате взрыва Сверхновой. [Гл.5]

1935 Чандрасекар завершает работу по определению предельной массы белого карлика и подвергается критике Эддингтона. [Гл.4]

1935–1939 Годы террора в СССР. [Гл.5, 6]

1937 Гринштейн и Уиппл утверждают, что открытое Янски космическое радиоизлучение не может объясняться известными астрофизическими процессами. [Гл.9]

Ландау, в отчаянной попытке избежать ареста, выдвигает гипотезу, что звезды поддерживают свою светимость за счет падения вещества на нейтронные ядра в их центрах. [Гл.5]

1938 Ландау арестовывают в Москве по подозрению в шпионаже в пользу Германии. [Гл.5]

Оппенгеймер и Сербер опровергают гипотезу Ландау о нейтронных ядрах в центрах звезд; Оппенгеймер и Волков показывают, что существует максимальный предел массы для нейтронных звезд. [Гл.5]

Бете и Критчфилд утверждают, что Солнце и другие звезды светят за счет ядерного горючего. [Гл.5]

1939 Ландау освобождают из тюрьмы. [Гл.5]

Эйнштейн утверждает, что черные дыры не могут существовать в реальной Вселенной. [Гл.4]

Оппенгеймер и Снайдер проводят расчеты, из которых следует, что при взрыве массивной звезды образуется черная дыра; результаты привели к парадоксальному выводу: внешний наблюдатель видит звезду застывшей у горизонта событий, несмотря на то, что ее поверхность продолжает сжиматься. [Гл.6]

Ребер открывает космическое радиоизлучение далеких галактик, но не может определить его природу. [Гл.9]

Бор и Уилер разрабатывают теорию деления ядра. [Гл.6]

Харитон и Зельдович разрабатывают теорию цепных реакций. [Гл.6] Немецкая армия вторгается в Польшу и развязывает вторую мировую войну.

1942 В США начинается создание атомной бомбы под руководством Оппенгеймера. [Гл.6]

1943 В СССР начинаются работы по созданию атомного реактора и атомной бомбы согласно теоретическим разработкам Зельдовича. [Гл.6]

1945 США сбрасывают атомные бомбы на Хиросиму и Нагасаки. Заканчивается вторая мировая война. В США начинаются работы по созданию супербомбы. [Гл.6]

В СССР продолжаются интенсивные работы по созданию атомной бомбы под теоретическим руководством Зельдовича. [Гл.6]

1946 Фридман со своей группой на немецкой ракете Фау-2 запускает за пределы земной атмосферы первый астрономический инструмент. [Гл.8] Английские и австралийские физики-экспериментаторы начинают строительство радиотелескопов и радиоинтерферометров. [Гл.9]

1948 Под руководством Зельдовича, Сахарова, Гинзбурга и др. в СССР начинаются работы по созданию водородной бомбы; Гинзбург изобретает топливо из дейтрида лития, Сахаров предлагает устройство бомбы в виде слойки. [Гл.6]

1949 В СССР проводятся испытания атомной бомбы, из-за чего в США начинаются усиленные дебаты по поводу создания водородной бомбы. В СССР начинаются работы по созданию такой же бомбы. [Гл.6]

1950 В США вводится в действие программа по разработке водородной бомбы. [Гл.6]

Кипенхоер и Гинзбург приходят к выводу, что космическое радиоизлучение объясняется тем, что электроны космических лучей движутся по спирали вокруг силовых линий межзвездных магнитных полей. [Гл.9]

Александров и Пименов пытаются применить топологические методы к исследованию кривизны пространства-времени. [Гл.13]

1951 Теллер и Улам в США предлагают идею создания «реальной» супербомбы произвольной мощности; Уилер организует группу по разработке такой бомбы и создает ее компьютерную модель. [Гл.6]

Грэхем Смит определяет с точностью до 1 угловой минуты положение на небе космического радиоисточника Лебедь А; Бааде с помощью наблюдений на оптическом телескопе делает открытие, что этот источник является удаленной радиогалактикой. [Гл.9]

1952 В США проводятся испытания нетранспортируемого термоядерного устройства, основанного на изобретении Теллера — Улама и на работе группы Уилера. [Гл.6]

1953 Уилер начинает заниматься ОТО. [Гл.6]

Дженнисон и Дас Гупта делают открытие, что источник радиоизлучения от галактик — гигантские радиолепестки. [Гл.9]

Кончина Сталина. [Гл.6]

В СССР проводятся испытания водородной бомбы, созданной на основе идей Гинзбурга и Сахарова. Ученые США делают заявление, что эта бомба не может считаться реальной: ее устройство таково, что невозможно создать бомбу произвольной мощности. [Гл.6]

1954 Сахаров и Зельдович повторяют идею Теллера — Улама, разрешающую создание «реальной» супербомбы. [Гл.6]

В США проводятся испытания первой реальной водородной бомбы, основанной на идее Теллера — Улама и Сахарова — Зельдовича. [Гл.6] Теллер дает свидетельские показания против Оппенгеймера, и Оппенгеймер объявляется политически неблагонадежным. [Гл.6]

1955 В СССР проводятся испытания водородной бомбы, основанной на идее Теллера — Улама и Сахарова — Зельдовича. [Гл.6]

Уилер формулирует понятие гравитационных флуктуаций вакуума, определяет длину Планка — Уилера как характерную шкалу, на которой они становятся очень большими, и высказывает гипотезу, что на этой шкале понятие пространства-времени следует заменить понятием квантовая пена. [Гл.12–14]

1957 Уилер, Гаррисон и Вакано формулируют понятие «холодной» материи и составляют каталог всех возможных «холодных, умерших» звезд. Их каталог подтверждает вывод о том, что массивные звезды могут завершать свою эволюцию в результате взрыва. [Гл.5]

Группа Уилера занимается исследованием кротовых нор; Редже и Уилер предлагают метод анализа малых возмущений кротовых нор; позднее их метод будет использован для изучения возмущений черных дыр. [Гл.7, 14]

Уилер отдает себя целиком исследованиям конечной стадии эволюции звезд после взрыва и отвергает идею Оппенгеймера, что конечная стадия связана с образованием черной дыры. [Гл.6, 13]

1958 Финкелынтейн предлагает новую систему отсчета для метрики Швар-цшильда и таким образом разрешает парадокс Оппенгеймера — Снайдера (1939) о кажущемся для внешнего наблюдателя «застывании» взрывающейся звезды. [Гл.6]

1958–1960 Уилер становится сторонником идеи черных дыр. [Гл.6]

1959 Уилер утверждает, что сингулярности, образовавшиеся во время Большого хруста или внутри черной дыры, должны подчиняться законам квантовой гравитации и могут состоять из «квантовой пены». [Гл.13] Барбидж показывает, что гигантские «радиоуши» галактик содержат магнитную и кинетическую энергию, эквивалентную 10 миллионам Солнц. [Гл.9]

1960 Вебер начинает строительство детекторов гравитационных волн. [Гл.10] Крускал показывает, что в отсутствие вещества червоточина сферической формы очень быстро исчезает. [Гл.14]

Грейвс и Брилл показывают, что решение Рейсснера — Нордстрема для уравнения Эйнштейна описывает как сферическую, электрически заряженную черную дыру, так и кротовую нору. [Гл.7] Они также высказывают предположение о возможности путешествия из черной дыры в нашей Вселенной через гиперпространство в другую вселенную. [Гл.13]

1961 Халатников и Лифшиц утверждают, что уравнение поля Эйштейна не разрешает существование сингулярностей со случайной кривизной, и поэтому сингулярности не могут возникать внутри реальных черных дыр или при Большом хрусте Вселенной. [Гл.13]

1961–1962 Зельдович начинает заниматься астрофизикой и общей теорией относительности, привлекает к этим исследованиям Новикова и формирует научно-исследовательскую группу. [Гл.6]

1962 Торн начинает заниматься научно-исследовательской деятельностью под руководством Уилл ера и делает первые шаги к формулировке своей гипотезы обруча. [Гл.7]

Джиаккони со своей группой открывают космическое рентгеновское излучение с помощью гейгеровского счетчика, запущенного на ракете Аэроби за пределы земной атмосферы. [Гл.8]

1963 Керр предлагает свое решение уравнения поля Эйнштейна. [Гл.7] Шмидт, Гринштейн и Сандаж открывают квазары. [Гл.9]

1964 Начинается Золотой век теоретического исследования черных дыр. [Гл.7] Пенроуз вводит топологический метод в исследования гравитации и использует его для доказательства того, что сингулярности должны присутствовать во всех черных дырах. [Гл.13]

Гинзбург, а впоследствии Дорошкевич, Новиков и Зельдович приводят первые аргументы в пользу того, что черная дыра не имеет «волос». [Гл.7]

Колгейт, Мэй и Уайт в США, а также Подурец, Имшенник и Надежин в СССР создают компьютерные модели взрыва звездного ядра; они подтверждают вывод Цвикки (1934) о том, что взрыв звезды малой массы приводит к Сверхновой и образованию нейтронной звезды, а также вывод Оппенгеймера-Снайдера (1939) о том, что взрыв звезды большой массы приводит к образованию черной дыры. [Гл.6] Зельдович, Гусейнов и Салпетер высказывают первые предложения о том, как проводить поиски черных дыр в реальной Вселенной. [Гл.8] Салпетер и Зельдович предлагают гипотезу о сверхмассивных черных дырах как источниках светимости квазаров и радиогалактик. [Гл.9] Герберт Фридман с помощью счетчика Гейгера, установленного на ракете, открывает со своей группой рентгеновский источник Лебедь Х-1. [Гл.8]

1965 Бойер и Линдквист, а также Картер и независимо от него Пенроуз показывают, что решение Керра для уравнения поля Эйнштейна описывает вращающуюся черную дыру. [Гл.7]

1966 Зельдович и Новиков предлагают проводить поиски черных дыр в двойных звездных системах, в которых одна звезда излучает в рентгеновском, а другая — в оптическом диапазоне; этот метод начнет использоваться в 1970-х годах. [Гл.8]

Герох показывает, что неквантовые изменения топологии пространства (например, червоточины) могут возникать только, если в процессе возникает хотя бы на кратчайший промежуток времени машина времени. [Гл.14]

1967 Уилер придумывает название «черная дыра». [Гл.7]

Израэль проводит строгое доказательство первой части теоремы о том, что «у черной дыры нет волос»: Невращающаяся черная дыра должна иметь совершенно сферическую форму. [Гл.7]

1968 Пенроуз утверждает, что путешествие из нашей Вселенной в другую вселенную с использованием черной дыры как перехода в гиперпространство невозможно; его аргументация будет подтверждена другими учеными в 1970-х годах. [Гл.13]

Картер раскрывает природу пространственной воронки вокруг вращающейся черной дыры и ее влияния на падающие частицы. [Гл.7] Мизнер и, независимо от него, Белинский, Халатников и Лифшиц обнаружили новое решение уравнения Эйнштейна, описывающее колебательный режим приближения к особой точке (сингулярности). [Гл.13]

1969 Хокинг и Пенроуз приводят доказательство того, что в самом начале Большого взрыва наша Вселенная должна была находиться в состоянии сингулярности. [Гл.13]

Белинский, Халатников и Лифшиц продолжают исследовать колебательный режим приближения к особой точке как новое решение уравнения Эйнштейна; они отмечают случайные колебания пространственно-временной кривизны найденной ими сингулярности и утверждают, что именно такой тип сингулярности характерен для черных дыр и Большого хруста. [Гл.13]

Пенроуз открывает, что вращающаяся черная дыра запасает огромные количества энергии в вихревом движении пространства, происходящем вокруг нее, и что эта энергия вращения может переходить в другие формы. [Гл.7]

Пенроуз выдвигает гипотезу о «космической цензуре», согласно которой законы физики препятствуют образованию голых сингулярностей. [Гл.13]

Линден-Белл высказывает гипотезу о том, что в ядрах галактик находятся гигантские черные дыры, окруженные аккреционными дисками. [Гл.9]

Кристодулу замечает подобие законов эволюции черной дыры, на которую происходит медленная аккреция вещества, законам термодинамики. [Гл.12]

Вебер объявляет предварительные свидетельства существования гравитационных волн; это вдохновляет многих других экспериментаторов на строительство гравитационных детекторов. К 1975 г. станет ясно, что Вебер на самом деле не видел гравитационные волны. [Гл.10] Брагинский говорит о существовании квантового предела чувствительности гравитационно-волновых детекторов. [Гл.10]

1970 Бардин показывает, что из-за аккреции газа типичные черные дыры в нашей Вселенной должны вращаться очень быстро. [Гл.9]

Прайс, основываясь на работах Пенроуза, Новикова, Чейза де ла Круз и Израэля, приходит к выводу, что черные дыры теряют свои «волосы» путем излучения, и утверждает, что излучение черных дыр продолжается до конца: пока все, что может излучаться, не излучится. [Гл.7]

Хокинг формулирует понятие абсолютного горизонта событий черной дыры и приводит доказательство того, что площадь поверхности абсолютного горизонта событий может только увеличиваться. [Гл.12] Группа Джиаккони создает «Ухуру», первый детектор рентгеновского излучения на спутнике, и осуществляет его запуск на орбиту. [Гл.8]

1971 Получены совместные наблюдения двойной звездной системы Лебедь Х-1 в рентгеновском, радио и оптическом диапазоне, которые свидетельствуют в пользу того, что система состоит из черной дыры и нормальной звезды. [Гл.81]

Вайс в Массачусетсском технологическом институте и Форвард в лаборатории Говарда Хьюза создают интерферометрические детекторы гравитационных волн. [Гл.10]

Рис выдвигает предположение, что гигантские радиолепестки радиогалактик возникают благодаря струям, вырывающимся из ядер галактик. [Гл.9]

Ханни и Руффини формулируют понятие поверхностного заряда на горизонте событий, которое послужит основой создания мембранного подхода. [Гл.11]

Пресс открывает возможность пульсаций черных дыр. [Гл.7] Зельдович выдвигает гипотезу об излучении вращающихся черных дыр; Зельдович и Старобинский доказывают эту гипотезу на основании законов квантовых полей в искривленном пространстве-времени. [Гл.12] Хокинг указывает на возможность создания крошечных «изначальных» черных дыр во время Большого взрыва. [Гл.12]

1972 Основываясь на работе Хокинга и Израэля, Картер доказывает (не считая некоторых технических деталей, внесенных позже Робинсоном), что гипотеза об отсутствии волос приложима также к вращающимся незаряженным черным дырам. Он показывает, что такая черная дыра всегда описывается решением уравнения Эйнштейна, полученным Керром. [Гл.7]

Торн предлагает гипотезу об обруче в качестве критерия момента образования черной дыры. [Гл.7]

Бекенштейн выдвигает предположение, что площадь поверхности черной дыры по существу определяет ее энтропию и что энтропия черной дыры равна логарифму числа всевозможных способов ее образования. Хокинг решительно выступает против этого предположения. [Гл.12] Бардин, Картер и Хокинг формулируют законы эволюции черных дыр в форме, идентичной законам термодинамики, но при этом утверждают, что площадь поверхности горизонта событий не является «замаскированной» энтропией черной дыры. [Гл.12]

Тьюкольски разрабатывает метод возмущений для анализа пульсаций вращающихся черных дыр. [Гл.7]

1973 Пресс и Тьюкольски доказывают, что пульсации вращающейся черной дыры устойчивы; они не подпитываются за счет вращательной энергии черной дыры. [Гл.7]

1974 Хокинг показывает, что все черные дыры без исключения, как вращающиеся, так и невращающиеся, излучают в точности так, как если бы они имели температуру, пропорциональную силе их поверхностной гравитации; следовательно, они испаряются. Он признает, что был неправ, когда утверждал, что законы механики черных дыр никоим образом не соответствуют законам термодинамики, и снимает свою критику Бекенштейна по этому вопросу (последний утверждал, что площадь поверхности черной дыры фактически соответствует ее энтропии). [Гл.12]

1974–1978 Блэндфорд, Рис и Линден-Белл предлагают несколько моделей возникновения джетов у сверхмассивных черных дыр в ядрах галактик и квазарах. [Гл.9]

1975 Бардин и Петтерсон показывают, что воронка пространства вокруг вращающейся черной дыры является своего рода гироскопом, поддерживающим направление струй. [Гл.9]

Чандрасекар начинает создавать точную математическую теорию возмущений черных дыр (у него уйдет на это 5 лет). [Гл.7]

Унру и Дэвис приходят к выводу, что для внешнего наблюдателя, движущегося с ускорением вблизи горизонта событий черной дыры, черная дыра выглядит окруженной горячей атмосферой из частиц; эти частицы постепенно излучаются, за счет чего черная дыра испаряется. [Гл.12]

Пейдж рассчитывает спектр частиц, излучаемых черными дырами. На основании результатов наблюдений космического гамма-излучения Хокинг и Пейдж приходят к заключению, что в одном кубическом световом годе пространства содержится не более 300 крошечных, первичных, испаряющихся черных дыр. [Гл.12]

По мнению нового поколения исследователей, Золотой век теоретического изучения черных дыр подходит к концу. [Гл.7]

1977 Гиббонс и Хокинг подтверждают предположение Бекенштайна о том, что энтропия черной дыры равна логарифму количества всевозможных способов ее возникновения. [Гл.12]

Интерферометрическим методом радиоастрономы открывают струи, исходящие из черных дыр в центрах галактик и подпитывающие гигантские радиолепестки этих галактик. [Гл.9]

Блэндфорд и Знаек показывают, что магнитные поля, пронизывающие горизонт событий вращающейся черной дыры, могут извлекать вращательную энергию черной дыры и снабжать ею квазары и радио-галактики. [Гл.9]

Знаек и Дамур формулируют понятие мембраны для описания горизонта событий черной дыры. [Гл.11]

Брагинский с коллегами, а также Кейве, Торн и др. разрабатывают оптимальные детекторы гравитационных волн, позволяющие обходить квантовый предел измерений. [Гл.10]

1978 Группа Джиаккони заканчивает строительство первого рентгеновского телескопа с высоким разрешением («Эйнштейн») и запускает его на орбиту. [Гл.8]

1979 Таунс и др. получают данные, указывающие на существование в центре нашей Галактики черной дыры с массой 3 миллиона солнечных масс. [Гл.9]

Дривер в Калифорнийском технологическом институте начинает работу над проектом интерферометра для измерения гравитационных волн. [Гл.10]

1982 Бантинг и Мазур доказывают справедливость гипотезы об «отсутствии волос» у вращающейся электрически заряженной черной дыры. [Гл.7]

1983–1988 Финни и др. разрабатывают разнообразные модели квазаров и радиогалактик, имеющие в своей основе черную дыру. [Гл.9]

1984 Национальный научный фонд (США) объединяет усилия Калифорнийского технологического института и Массачусетсского института технологии по созданию гравитационно-волновых детекторов в рамках проекта LIGO. [Гл.10]

Редмаунт (основываясь на более ранней работе Эрдли) показывает, что излучение, попадающее в пустую сферическую червоточину, ускоряется до высоких энергий, в результате чего червоточина быстро схлопывается. [Гл.14]

1985–1993 Торн, Моррис, Юртсевер, Фридман, Новиков и др. исследуют законы физики с точки зрения непротиворечивости идее путешествия вдоль червоточины и существования машины времени. [Гл.14]

1987 Войт становится руководителем проекта LIGO, и проект начинает интенсивно разрабатываться. [Гл.10]

1990 Ким и Торн показывают, что независимо от способа образования машины времени в самый момент ее возникновения в ней начинает циркулировать интенсивный пучок вакуумных флуктуаций. [Гл.14]

1991 Хокинг предлагает гипотезу о «защите хронологии» (согласно которой законы физики запрещают существование машины времени) и утверждает, что циркулирующий пучок вакуумных флуктуаций разрушает любую машину времени в момент ее возникновения. [Гл.14] Израэль, Пуассон и Ори на основании работы Дорошкевича и Новикова показывают, что сингулярность внутри черной дыры изменяется со временем («стареет»); Ори показывает, что объекты, попадающие в «старую и спокойную» черную дыру, не подвергаются сильному воздействию приливной гравитации сингулярности, пока не достигнут квантово-гравитационного ядра. [Гл.13]

Шапиро и Тьюкольски, в результате моделирования на суперкомпьютере, приходят к выводу, что гипотеза о «космической цензуре» может не выполняться: «голые» сингулярности могут формироваться при взрыве сильно несферических звезд. [Гл.13]

1993 Халсе и Тейлор получают Нобелевскую премию за доказательство существования гравитационных волн путем наблюдений двойного пульсара. [Гл.10]