Глава 37 МАГНИТНЫЕ МАТЕРИАЛЫ

We use cookies. Read the Privacy and Cookie Policy

Глава 37

МАГНИТНЫЕ МАТЕРИАЛЫ

§ 1.Сущность ферромагнетизма

§ 2.Термодинамические свойства

§ 3. Петля гистерезиса

§ 4.Ферромагнитные материалы

§ 5.Необычные магнитные материалы

§ 1. Сущность ферромагнетизма

В этой главе мы поговорим об особенностях и поведении ферромагнетиков и некоторых дру­гих необычных магнитных материалов. Но перед тем как приступить к этой теме, я сделаю ма­ленький обзор некоторых вопросов общей тео­рии магнитов, которые мы изучали в предыду­щей главе.

Мы сначала представили себе «магнитные» токи, текущие внутри материала и порождаю­щие магнетизм, а затем стали их описывать через объемную плотность токов jмar=СXM. Заметьте, что эти токи нереальные. Даже когда намагниченность вещества однородна, токи в нем на самом деле не исчезают полностью: кру­говые токи электрона в одном атоме и круговые токи электрона в другом атоме, перекрываясь, не дают в сумме точно нуль. Даже внутри каждого отдельного атома распределение магне­тизма не очень гладкое. В атоме железа, напри­мер, намагниченность распределена более или менее по сферической поверхности не слишком близко к ядру, но и не слишком далеко от него. Таким образом, магнетизм в веществе — вещь довольно сложная в своих деталях и весьма нерегулярная. Но сейчас мы должны об этих сложностях забыть и рассматривать явление, пользуясь более грубой усредненной моделью. Только тогда становится верным утверждение о равенстве нулю среднего тока при М=0 в ог­раниченной внутренней области, большой по сравнению с размерами атома. Таким образом, под магнитным моментом единицы объема (намагниченностью) и под jмаг и т. п. на нашем теперешнем уровне рассмотрения мы понимаем среднее по областям, большим по сравнению с пространст­вом, занимаемым отдельным атомом.

В предыдущей главе мы обнаружили, что ферромагнитные материалы обладают следующим интересным свойством: при температурах выше некоторой их магнитные свойства проявля­ются слабо и лишь ниже этой температуры они становятся сильными магнетиками. Этот факт легко продемонстрировать. Кусок никелевого провода при комнатной температуре притя­гивается магнитом. Но если мы его нагреем в пламени газовой горелки выше температуры Кюри, то он станет практически немагнитным и не будет притягиваться к магниту, даже если мы поднесем его совсем близко. Если же оставить его остывать возле магнита, то в тот момент, когда его температура упадет ниже критической, он внезапно снова притянется к магниту!

В общей теории магнетизма, которой мы пользуемся, пред­полагается, что за намагниченность ответствен спин электрона. Спин электрона равен 1/2 и сопровождается магнитным момен­том, равным одному магнетону Бора: (m=mb=qeh/2m. Спин электрона может быть направлен либо вверх, либо вниз. Поскольку заряд электрона отрицателен, то магнитный момент его направлен вниз, когда спин направлен вверх, и направлен вверх, когда спин направлен вниз. В соответствии с нашим обычным соглашением магнитный момент электрона (А — число отрицательное. Мы нашли, что потенциальная энергия магнит­ного диполя в заданном приложенном поле В равна—m·B. Энергия вращающегося электрона зависит также и от распо­ложения соседних спинов. Если в железе момент соседнего атома направлен вверх, то момент следующего атома имеет сильную тенденцию тоже направиться вверх. Именно это делает железо, кобальт и никель такими сильными магнети­ками — все моменты атомов в них стремятся быть параллель­ными. И вот первый вопрос, который мы должны обсудить, — почему так происходит?

Вскоре после развития квантовой механики было замечено, что существуют чрезвычайно мощные кажущиеся силы (однако не магнитные и не другие известные силы), которые стараются выстроить спины соседних электронов противоположно один другому. Эти силы тесно связаны с силами химической валент­ности. В квантовой механике есть так называемый принцип запрета, который говорит, что два электрона не могут зани­мать в точности одно и то же состояние, т. е. они не могут нахо­диться в тех же самых условиях в смысле положения и ориен­тации спина. Если два электрона находятся в одном и том же месте, то единственной возможностью им различаться будет только противоположное направление их спинов. Таким об­разом, если между атомами имеется область пространства, где скапливаются электроны(так происходит при химической связи), и если на сидящий уже там электрон нам захочется посадить другой, то единственный способ это сделать — направить спин второго электрона противоположно спину первого. Параллель­ность спинов противоречит принципу запрета, если, конечно, электроны расположены в одной точке. В результате пара близ­ких друг к другу электронов с параллельными спинами обла­дает гораздо большей энергией, нежели пара электронов с про­тивоположными спинами; в целом же эффект будет таким, как будто действует сила, старающаяся развернуть спины противо­положно друг другу. Иногда такие «спин-вращающие» силы на­зываются обменными, но это название только увеличивает таин­ственность, так что термин этот не слишком удачен. Стремление электронов иметь противоположные спины обязано просто принципу запрета. Но фактически это объясняет отсутствие магнетизма почти у всех веществ! Спины свободных электронов на окраине атомов стремятся уравновешиваться в противопо­ложных направлениях. Проблема заключается в том, чтобы объяснить, почему же материалы, подобные железу, ведут себя совсем не так, как ожидается.

Предполагаемый эффект выстраивания мы учитывали добав­лением в выражение для энергии подходящего слагаемого, приговаривая, что если соседние электронные магнитики дают среднюю намагниченность М, то магнитный момент электрона имеет сильную тенденцию смотреть в том же самом направлении, что и средняя намагниченность соседних атомов. Таким обра­зом, для двух возможных ориентации спинов можно написать:

Когда стало ясно, что квантовая механика может объяснить нам огромные спин-ориентирующие силы, пусть даже с очевид­но неправильным знаком, то было предложено, что ферромаг­нетизм возникает именно за счет этих сил, но что вследствие сложности железа и большого числа участвующих в игре элект­ронов знак энергии электронов получается обратным. Как толь­ко это стало ясно, т. е. примерно с 1927 г., когда была понята квантовая механика, многие исследователи стали делать разные оценки, прикидки, полуподсчеты, стремясь получить тео­ретически величину К. Но все равно наиболее поздние вычисле­ния энергии взаимодействия между двумя электронными спи­нами в железе, предполагавшие прямое взаимодействие между двумя электронами в соседних атомах, дали неправильный знак. Сейчас, описывая это явление, говорят, что за все как-то ответ­ственна сложность ситуации и что есть надежда, что кому-то, кто сумеет проделать вычисления для более сложного случая, удастся получить правильный ответ!

Полагают, что направленный вверх спин одного из электро­нов внутренней оболочки, который ответствен за магнетизм, стремится заставить спины электронов проводимости, витаю­щих вокруг него, повернуться в противоположную сторону. Можно надеяться, что это ему вполне удастся, ибо электроны проводимости движутся в той же самой области, что и «магнит­ные» электроны. А поскольку они движутся то туда, то сюда, то могут передать свой приказ перевернуться «вверх ногами» спинам электронов других атомов; таким образом, «магнитный» электрон заставляет электрон проводимости направить спин в противоположную сторону, а тот в свою очередь заставляет следующий «магнитный» электрон направить свой спин проти­воположно его спину. Это двойное взаимодействие эквивалентно взаимодействию, стремящемуся выстроить два «магнитных» электрона в одном направлении. Иными словами, тенденция соседних спинов быть параллельными есть результат действия промежуточной среды, которая в некотором смысле стремится быть противоположной им обоим. Этот механизм не требует, чтобы все электроны проводимости были повернуты «вверх ногами». Достаточно, чтобы они лишь слегка стремились по­вернуться вниз, и шансы «магнитных» электронов повернуться вверх перевесят. Как полагают те исследователи, которые рабо­тали с этими вещами, это и есть тот механизм, который ответ­ствен за ферромагнетизм. Но должен отметить, что вплоть до сегодняшнего дня никто не может вычислить величину l мате­риала, зная просто, что в периодической системе элементов этот материал стоит, скажем, под номером 26. Короче говоря, мы все еще не можем понять явление до конца.

Теперь же продолжим рассуждения о нашей теории, а потом вернемся снова назад и обсудим некоторые ошибки избранного нами пути. Если магнитный момент какого-то электрона на­правлен вверх, то его энергия частично обусловлена внешним полем, а частично связана с тенденцией спинов быть параллель­ными. Поскольку при параллельных спинах энергия меньше, то эффект получается таким же, как и от «внешнего эффектив­ного поля». Но помните, что обязано это не истинным магнит­ным силам, а более сложному взаимодействию. Во всяком слу­чае, в качестве выражений для энергии двух спиновых состояний «магнитного» электрона мы примем уравнения (37.1). От­носительная вероятность этих двух состояний при температуре Т пропорциональна exp[-энергия/kT], что можно записать как е±х, где х=|m|(H+lM/e0с2)/kT. Если затем мы вычислим среднюю величину магнитного момента, то найдем (как и в предыдущей главе), что она равна

M=N |m|thx. (37.2)

Теперь я могу подсчитать внутреннюю энергию материала. Отметим, что энергия электрона в точности пропорциональна магнитному моменту, так что все равно, вычислять ли средний момент или среднюю энергию. Среднее значение энергии будет при этом

Но это не совсем верно. Выражение lM/e0c2 представляет взаимодействие всех возможных пар атомов, а мы должны пом­нить, что каждую пару следует учитывать только один раз. (Ког­да мы учитываем энергию одного электрона в поле остальных, а затем энергию второго электрона в поле остальных, то мы еще раз учитываем часть первой энергии.) Поэтому выражение взаи­модействия мы должны разделить на 2 и наша формула для энергии приобретет вид

В предыдущей главе мы обнаружили одну очень интересную особенность: для каждого материала ниже определенной темпе­ратуры существует такое решение уравнений, при котором маг­нитный момент не равен нулю даже в отсутствие внешнего на­магничивающего поля. Если в уравнении (37.2) мы положим Н=0, то найдем

где Мнас=N|m| и Tc=|m|lMнас./ke0c2. Решив это уравнение (графи­чески или каким-то другим способом), мы найдем, что отноше­ние М/Мнаскак функция от T/Tcпредставляет кривую, наз­ванную на фиг. 37.1 «квантовая теория».

Фиг. 37.1. Зависимость спонтанной намагниченности (Н=0) ферромагнитных кристаллов от температуры.

Пунктирная кривая «Кобальт, Никель» — это полученная экспериментально кри­вая для кристаллов этих элементов. Теория и эксперимент находятся в разумном согласии. Там же представлены резуль­таты классической теории, в которой вычисления проводились в предположении, что атомные магнитики могут иметь всевоз­можные ориентации в пространстве.

Можете убедиться, что это предположение приводит к предсказаниям, которые весьма далеки от экспериментальных данных.

Даже квантовая теория недостаточно хорошо описывает наблюдаемое поведение при высоких и низких температурах. Причина этого отклонения заключена в принятом нами доволь­но грубом приближении: мы предполагали, что энергия атома зависит лишь от средней намагниченности соседних с ним ато­мов. Другими словами, каждый атом со спином, направленным вверх, находящийся по соседству с данным атомом, из-за квантовомеханического эффекта выстраивания вносит свой вклад в энергию. А сколько таких атомов? В среднем это из­меряется величиной намагниченности, но это только в сред­нем. Может оказаться, что для какого-то одного атома спины всех его соседей направлены вверх. Тогда его энергия будет выше средней. У другого же спины некоторых соседей направ­лены вверх, а некоторых — вниз, а среднее может быть нулем, и тогда никакого вклада в энергию вообще не будет и т. д. Из-за того что атомы в разных местах имеют различное окружение с различным числом направленных вверх и вниз спинов, нам следовало бы воспользоваться более сложным способом усред­нения. Вместо того чтобы брать один атом, подверженный сред­нему влиянию, нам следовало бы взять каждый атом в его реаль­ной обстановке, подсчитать его энергию, а затем найти среднюю энергию. Но как же все-таки определить, сколько соседей ато­мов направлено вверх, а сколько — вниз? Это как раз и нужно вычислить, но здесь мы сталкиваемся с очень сложной задачей внутренних корреляций,— задачей, которую никому еще не уда­валось решить. Эта животрепещущая и интригующая проблема в течение многих лет волновала умы физиков; по этому вопросу писалось множество статей крупнейшими учеными, но и они не могли найти полного решения.

Оказывается, что при низких температурах, когда почти все атомные магниты направлены вверх и лишь некоторые направ­лены вниз, задача решается довольно легко; то же самое можно сказать и о высоких температурах, значительно превышаю­щих температуру Кюри Тс, когда почти все они направлены совершенно случайно. Часто легко вычислить небольшие откло­нения от некоторой простой идеализированной теории, и до­вольно ясно, почему такие отклонения имеются при низких температурах. Физически понятно, что по статистическим при­чинам намагниченность при высоких температурах должна исчезать. Но точное поведение вблизи точки Кюри никогда во всех подробностях не было установлено. Это очень интересная задача, над которой стоит потрудиться, если когда-нибудь вам вздумается взяться за еще не решенную проблему.

§ 2. Термодинамические свойства

В предыдущей главе мы заложили основу, необходимую для вычисления термодинамических свойств ферромагнитных ма­териалов. Они, естественно, связаны с внутренней энергией кристалла, которая обусловлена взаимодействием между раз­личными спинами и определяется формулой (37.3). Для нахож­дения энергии, связанной со спонтанной намагниченностью (ни­же точки Кюри), мы можем в уравнении (37.3) положить Н=0 и, заметив, что thx=М/Мнас, найти, что средняя энергия про­порциональна М2:

Если мы теперь построим график зависимости намагниченности от температуры, то получим кривую, которая описывается от­рицательным квадратом функции (37.1) и представлена на фиг. 37.2, а. Если бы мы измеряли удельную теплоемкость такого материала, то получили бы кривую (фиг. 37.2, б), ко­торая представляет производную кривой, изображенной на фиг. 37.2, а.

Фиг. 37.2. Энергия в единице объема и удельная теплоемкость ферромагнитного материала.

С увеличением тем­пературы эта кривая медленно растет, но затем при Т = Тснео­жиданно падает до нуля. Резкое падение вызвано изменением на­клона кривой магнитной энер­гии, и кривая ее производной попадает прямо в точку Кюри. Таким образом, совершенно без магнитных измерений, лишь наб­людая за термодинамическими свойствами, мы бы смогли уста­новить, что внутри железа или никеля что-то происходит. Однако как из эксперимента, так и из улучшенной теории (с учетом внутренних флуктуации) следует, что эти простые кривые неправильны и что истинная картина на самом деле бо­лее сложна. Пик этих кривых поднят выше, а падение до нуля происходит несколько медленнее. Даже если температура до­статочно велика, так что спины в среднем распределены совер­шенно случайно, все равно попадаются области с определенным значением намагниченности, и спины в этих областях продол­жают давать небольшую дополнительную энергию взаимодей­ствия, которая медленно уменьшается с ростом температуры и увеличением беспорядка. Так что реальная кривая выглядит так, как показано на фиг. 37.2, в. Одна из целей физики сегод­няшнего дня — найти точное теоретическое описание удельной теплоемкости вблизи точки перехода Кюри — захватывающая проблема, не решенная до сих пор. Естественно, что эта пробле­ма очень тесно связана с формой кривой намагничивания в той же самой области.

Опишем теперь некоторые эксперименты, отнюдь не термоди­намического характера, которые показывают, что мы все же в каком-то смысле правы в нашей интерпретации магнетизма. Когда материал при достаточно низких температурах намагни­чен до насыщения, то М очень близка к Мнас, т. е. почти все спины, равно как и магнитные моменты, параллельны. Это можно проверить экспериментально. Предположим, что мы подвесили магнитную па­лочку на тонкой струне, а затем окружили ее катушкой, так что мо­жем менять магнитное поле, не притрагиваясь к магниту и не прикладывая к нему никакого момента сил. Это очень трудный эксперимент, ибо магнитные силы столь велики, что любая нерегулярность, любой перекос или несо­вершенство в железе могут дать случайный момент. Однако такой эксперимент был выполнен со всей необходимой аккурат­ностью и роль случайных моментов была сведена до минимума. С помощью магнитного поля катушки, которая окружает па­лочку, мы сразу можем перевернуть все магнитные моменты. Когда мы это проделаем, то заодно «сверху вниз» перевернутся и все моменты количества движения, связанные со спином (фиг. 37.3).

Фиг. 37.3. При перемагничивании железного бруска он приобретает некоторую угловую скорость.

Но поскольку момент количества движения должен сохраняться, то, когда все спины перевернулись, момент количе­ства движения палочки должен измениться в противоположную сторону. Весь магнит должен начать вращаться. Это произошло на самом деле. Когда опыт был проделан, то было обнаружено слабое вращение магнита. Мы можем измерить полный момент количества движения, переданный всему магниту, который про­сто равен произведению N на h и на изменение момента количе­ства движения каждого спина. Оказалось, что измеренное этим способом отношение момента количества движения к магнит­ному с 10%-ной точностью совпадает с нашими вычислениями. На самом деле в наших вычислениях мы исходили из того, что атомный магнетизм целиком обязан электронным спинам, од­нако в большинстве материалов есть еще и орбитальное движе­ние. Орбитальное движение связано с решеткой, но она дает в магнетизм вклад не более нескольких процентов. Действительно, если взять Mнас=Nm и для плотности железа взять значение 7,9, а для m—момент электрона, связанный с его спином, то для магнитного поля получим насыщение около 20 000 гс. Однако опыт показывает, что на самом деле оно имеет значение вблизи 21500 гс. Ошибка в 5 или 10% возникает как раз из-за того, что мы пренебрегли вкладами орбитальных моментов. Таким образом, небольшое расхождение с гиромагнитными измерения­ми совершенно понятно.

§ 3. Петля гистерезиса

Из нашего теоретического анализа мы заключили, что маг­нитные материалы ниже некоторой температуры должны ста­новиться спонтанно намагниченными, так что все магнитики в них должны смотреть в одном и том же направлении. Однако для обычного куска ненамагниченного железа это, как мы знаем, неверно. Почему железо не намагничивается все целиком? С помощью фиг. 37.4 я могу объяснить вам это. Допустим, что все железо было бы одним большим кристаллом такой формы, как показано на фиг. 37.4, а, и этот кристалл целиком намаг­нитился бы в одном направлении.

Фиг. 37.4. Образование доме­нов в монокристалле железа.

При этом создалось бы зна­чительное внешнее магнитное поле, содержащее в себе огромную энергию. Мы можем уменьшить эту энергию поля, если распо­ложим атомы так, чтобы одна часть кубика была намагничена вверх, а другая — вниз, как показано на фиг. 37.4, б. При этом, разумеется, поле вне железа будет занимать меньший объем и будет нести в себе меньше энергии.

Постойте, постойте! В слое между двумя областями рядом с электронами со спином, направленным вверх, сидят электро­ны со спином, направленным вниз. Но ферромагнетизм появ­ляется только в тех материалах, для которых энергия умень­шается, когда спины параллельны, а не противоположны. Так что вдоль пунктирной линии на фиг. 37.4, б возникает некоторая добавочная энергия. Эта энергия иногда называется энергией стенки. Область, имеющая только одно направление намагниченности, называется доменом. На каждой единице площади разделяющей по­верхности между двумя доменами у стенки доме­на, с противоположных сторон которой у нас расположены атомы, чьи магнитные моменты направлены противоположно, сосредоточена энергия. Конечно, нельзя говорить строго, что на границе моменты двух сосед­них атомов в точности противоположны, природа-то сделала этот переход более постепенным. Но сейчас нам не стоит ин­тересоваться такими тонкими деталями.

Главный же вопрос теперь заключается вот в чем: выгодны такие стенки или нет? Ответ на него зависит от размеров доме­нов. Предположим, что мы увеличили размеры так, что все стало вдвое больше. При этом объем внешнего пространства, заполненного магнитным полем данной силы, станет в восемь раз больше, а энергия магнитного поля, которая пропорцио­нальна объему, тоже возрастет в восемь раз. Но площадь границы между двумя доменами, на которой сосредоточена энергия стенки, возрастет только в четыре раза. Следователь­но, если кусок железа достаточно велик, ему выгодно расще­питься на некое число доменов. Вот почему лишь очень малень­кие кристаллы могут состоять только из одного домена. Любой большой объект, размер которого больше приблизительно од­ной тысячной миллиметра, будет иметь по крайней мере одну междоменную стенку, а обычный «сантиметровый» объект расщепляется, как это показано на рисунке, на множество до­менов. Расщепление на домены будет происходить до тех пор, пока энергия, необходимая на установление еще одной допол­нительной стенки, не сравняется с уменьшением энергии маг­нитного поля вне кристалла.

Природа же нашла еще один способ понижения энергии. Полю нет никакой необходимости выходить наружу, если, как это показано на фиг. 37.4, г, взять маленькие треугольные области с направленной в сторону намагниченностью. При та­ком расположении, как на фиг. 37.4, г, внешнее поле полностью отсутствует, а площадь доменных стенок лишь незначительно больше.

Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным ку­бом. Его «вертикальный» размер будет отличаться от «горизон­тального».Этот эффект называется магнитострикцией. В ре­зультате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г, не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске нена­магниченного железа.

А что получится, если мы приложим внешнее магнитное по­ле? В качестве простого примера рассмотрим кристалл, домены которого показаны на фиг. 37.4, д. Если мы приложим магнит­ное поле, направленное вверх, то как будет происходить намагничивание кристалла? Прежде всего средняя доменная стен­ка может передвинуться в сторону (направо) и уменьшить энер­гию. Она перемещается таким образом, чтобы область направления «вверх» стала больше области направления «вниз», Элементарных магнитиков, направленных по полю, становится больше, а это приводит к понижению энергии. Таким образом, в куске железа в слабых магнитных полях с самого начала на­магничивания доменная стенка начнет двигаться и «съедать» области, намагниченные противоположно полю. По мере того как поле продолжает увеличиваться, весь кристалл постепенно превращается в один большой домен, в котором внешнее поле помогает сохранять направление «вверх». В сильном магнит­ном поле кристаллы намагничиваются в одну сторону как раз потому, что их энергия в приложенном поле уменьшается. Внешнее магнитное поле кристаллов теперь уже не так сущест­венно.

А что если геометрия кристалла не так проста? Что если какая-то ось кристалла и его спонтанная намагниченность нап­равлены в одну сторону, а мы прилагаем поле, направленное в другую, скажем под углом 45°? Можно думать, что домены по­вернутся так, чтобы их намагниченность стала параллельной полю, а затем они, как и прежде, смогут слиться в один домен. Но сделать это для железа нелегко, ибо энергия, необходимая для намагничивания кристалла, зависит от направления намаг­ничивающего поля относительно кристаллической оси. Намаг­нитить железо в направлении, параллельном кристаллической оси, относительно легко, но для того чтобы намагнитить его в каком-то другом направлении, скажем под углом 45° к на­правлению оси, энергии требуется больше. Следовательно, если в таком направлении приложить магнитное поле, то сначала происходит рост доменов, намагниченных в одном из избран­ных направлений, близких к направлению приложенного поля, пока в эту сторону не будет направлена намагниченность всех областей. Затем при гораздо больших полях общая намагниченность постепенно поворачивается к направ­лению поля, как это показано на фиг. 37.5.

Фиг. 37.5. Намагничивающее поле Н, направленное под некоторым углом к кристаллической оси, посте­пенно изменяет направление намагниченности М, не изменяя ее величины.

На фиг. 37.6 показаны полученные из опыта кривые намагничивания монокристал­лов железа.

Фиг. 37.6. График компоненты М, параллельной полю Н, при раз­личных направлениях Н (по отношению к осям кристалла).

Чтобы вы поняли их, я пред­варительно должен объяснить кое-какие обозначения, используемые для описания направлений в кристалле. Существует мно­го способов расслоения кристалла на плос­кости, в которых расположены атомы.

Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую,— вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz. Она называется плос­костью (100), так как обратные величины отрезков, отсекае­мых этой плоскостью по осям у и z, равны нулю.

Фиг. 37.7. Способы обозначения кристаллических плоскостей.

Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квад­ратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и. z. Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).

Вернемся теперь к фиг. 37.6. На ней мы видим кривые на­магничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь сла­бых, что в нашем масштабе их трудно изобразить, намагничен­ность чрезвычайно быстро возрастает до весьма больших зна­чений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы пе­редвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совер­шенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до на­сыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при боль­ших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать боль­шей намагниченности, она уже равна Mнас— значит, спины всех электронов направлены вверх.

Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под уг­лом 45° к оси х? Мы включаем небольшое поле, и намагничен­ность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достиже­ния насыщения поле должно быть довольно большим, ибо век­тор намагниченности нужно повернуть в сторону от направле­ния легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с верти­кальной осью должна будет давать значение намагниченно­сти, составляющее 1/Ц2от намагниченности насыщения. Ока­зывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/Ц2. Аналогично для направ­ления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вер­тикальную ось на расстоянии, составляющем 1/Ц2 от значе­ния, соответствующего насыщению.

На фиг. 37.8 показано соответствующее поведение двух других ферромагнетиков: никеля и кобальта.

Фиг. 37.8. Кривые намагничивания для монокристаллов железа, никеля и кобальта.

Никель отличает­ся от железа. Оказывается, что направлением легкого намаг­ничивания у него будет направление [111]. Кобальт имеет гек­сагональную кристаллическую структуру; для этого случая система обозначений была изменена. Здесь в основании шестиугольника располагают три оси и еще одну ось, перпендикуляр­ную к ним, так что здесь используется четыре числа. Направ­ление [0001] — это направление гексагональной оси, а [1010]— направление, перпендикулярное к этой оси. Вы видите, что кристаллы различных металлов устроены по-разному.

Теперь мы рассмотрим такой поликристаллический материал, как обычный кусок железа. Внутри него содержится огромное множество маленьких кристалликов, кристаллические оси которых направлены во все стороны. Но это не то же самое, что домены. Вспомните, все домены были частью одного кристалла, а в куске железа, как видно из фиг. 37.9, содержится множество различных кристаллов с разной ориентацией.

Фиг. 37.9. Микроструктура ненамагниченного поли­кристаллического ферромагнитного материала.

Каждый кристаллик имеет направление легкого намагничивания и разбивается на домены, которые обычно спонтанно намагни­чены в атом направлении.

В каждом из этих кристаллов, вообще говоря, содержится несколько доменов. Когда к куску поликристаллического материала мы прилагаем слабое магнитное поле, доменные барьеры в кристалликах на­чинают смещаться, и домены, направление намагниченности которых совпадает с направлением легкого намагничивания, растут все больше и больше. До тех пор пока поле остается очень малым, этот рост обратим; если мы выключим поле, намаг­ниченность снова вернется к нулю. Этот участок кривой намаг­ничивания обозначен на фиг. 37.10 буквой а.

Для больших полей в области, обозначенной буквой b, все становится гораздо более сложным. В каждом маленьком кри­сталле материала встречаются напряжения и дислокации, там есть примеси, грязь и дефекты. И при всех полях, за исключе­нием лишь очень слабых, стенки доменов при своем движении наталкиваются на них. Между доменной стенкой и дислокацией (или границей зерна или примесью) возникают взаимодействия. В результате, когда стенка наталкивается на препятствие, она как бы приклеивается и держится там, пока поле не достигнет определенной величины. Затем, когда поле несколько подрастет, стенка внезапно срывается. Таким образом, движение доменной стенки оказывается отнюдь не плавным, как в идеальном кри­сталле: она движется скачкообразно, то и дело останавливаясь на мгновение. Если бы мы рассмотрели кривую намагничивания в микроскопическом масштабе, то увидели бы нечто подобное изображенному на вставке фиг. 37.10.

Но самое важное заключается в том, что эти прыжки намаг­ничивания могут вызвать потерю энергии. Прежде всего, когда стенка домена проскакивает наконец через препятствие, она очень быстро движется к следующему. Быстрое движение вле­чет за собой и быстрое изменение магнитного поля, которое в свою очередь создает в кристалле вихревые токи. Последние растрачивают энергию на нагревание металла. Другой эффект состоит в том, что, когда домен неожиданно изменяется, часть кристаллов из-за магнитострикции изменяет свои размеры. Каж­дый неожиданный сдвиг доменной стенки создает небольшую звуковую волну, которая тоже уносит энергию. Благодаря та­ким эффектам эта часть кривой намагничивания необратима: происходит потеря энергии. В этом и заключается причина гистерезисного эффекта, ибо движение скачками вперед — од­но, а движение назад — уже другое и в оба конца затрачивается энергия. Это похоже на езду по ухабистой дороге.

В конечном счете при достаточно сильных полях, когда все доменные стенки сдвинуты и намагниченность каждого кристал­лика направлена по ближайшей к полю оси легкого намагни­чивания, остаются еще некоторые кристаллики, у которых ось легкого намагничивания далека от направления внешнего магнитного поля. Чтобы повернуть эти магнитные моменты, требуется еще дополнительное поле. Таким образом, в сильных полях именно в области, обозначенной на фиг. 37.10 буквой с, намагниченность возрастает медленно, но гладко.

Фиг. 37.10. Кривая намагни­чивания поликристаллического железа.

Намагничен­ность не сразу достигает своего насыщения, ибо в этой послед­ней части кривой происходит доворачивание атомных магнити­ков в сильном поле. Таким образом, мы видим, почему кривая намагничивания поликристаллического материала обычно име­ет вид, изображенный на фиг. 37.10: сначала она немного воз­растает и это возрастание обратимо, затем возрастает быстро, но уже необратимо, а потом медленно загибается. Разумеется, между этими тремя областями никакого резкого перехода нет— они плавно переходят одна в другую.

Нетрудно убедиться в том, что процесс намагничивания в средней части кривой носит скачкообразный характер, что доменные стенки при сдвиге прыгают и даже щелкают. Для этого нам нужна только катушка со многими тысячами витков провода, связанная через усилитель с громкоговорителем (фиг. 37.11).

Фиг. 37.11. Скачкообразные изменения намагничен­ности листков кремнистой стали сопровождаются щелчками в громкоговорителе.

Если внутрь катушки поместить несколько листков кремнистой стали (такого же сорта, как и в трансформаторах) и медленно подносить к этой пачке постоянный магнит, то скач­кообразные изменения намагниченности будут создавать в ка­тушке импульсы э. д. с., которые в громкоговорителе будут слы­шны как отдельные щелчки. По мере приближения магнита к железу на вас обрушится целый град щелчков, напоминаю­щий шум, создаваемый падающими друг на друга песчинками, высыпающимися из наклоненной жестянки. Это прыгают, покачиваются и щелкают доменные стенки по мере увеличения магнитного поля. Это явление называется эффектом Баркгаузена.

По мере приближения магнита к железным листикам шум некоторое время будет все возрастать, но когда магнит окажется совсем близко, шум начинает затихать. Почему? Да потому, что все доменные стенки передвинулись уже насколько возмож­но и теперь любое увеличение поля просто поворачивает век­торы намагниченности в каждом из доменов, а это уже вполне плавный процесс.

Если вы теперь будете плавно отодвигать магнит так, чтобы вернуться назад по нижней петле гистерезиса, то все домены будут тоже стремиться вернуться назад в положение низшей энергии и вы снова услышите град щелчков. Обратите внимание, что если вы отодвинете магнит до какого-то определенного по­ложения, а затем начнете немного двигать магнит взад и вперед, звук будет относительно слабым. Это снова напоминает пове­дение наклоненной жестянки с песком: когда песчинки «осели» на свое место, небольшой наклон жестянки уже не потревожит их. Небольшое изменение магнитного поля в железе неспособно заставить доменную стенку перескочить через «горб».

§ 4. Ферромагнитные материалы

Сейчас было бы хорошо рассказать о различных сортах маг­нитных материалов, применяемых в технике, и о некоторых проблемах, связанных с созданием магнитных материалов для разных целей. Прежде всего о самом термине «магнитные свой­ства железа», который часто приходится слышать. Он, строго говоря, не имеет смысла и способен ввести в заблуждение: «же­лезо» как строго определенный материал не существует. Свой­ства железа существенно зависят от количества примесей, а также от способа его приготовления. Вы понимаете, что магнит­ные свойства будут зависеть от того, насколько легко движутся доменные стенки, именно это свойство будет определяющим, а совсем не то, как ведут себя отдельные атомы. Так что практи­чески ферромагнетизм не является свойством атомов железа: это свойство куска железа в определенном состоянии. Железо, например, может находиться в двух различных кристаллических формах. Обычная форма имеет объемноцентрированную куби­ческую решетку, но может еще иметь и гранецентрированную решетку, которая, однако, стабильна только при температурах выше 1100°С. При этих температурах, разумеется, железо уже прошло точку Кюри. Однако, сплавляя с железом хром и ни­кель (один из возможных составов содержит 18% хрома и 8% никеля), мы можем получить то, что называется нержавеющей сталью; хотя она и состоит главным образом из железа, но сох­раняет гранецентрированную решетку даже при низких тем­пературах. Благодаря своей кристаллической структуре этот материал обладает совершенно другими магнитными свойст­вами. Обычно нержавеющая сталь немагнитна в сколько-нибудь заметной степени, хотя есть сорта с другим составом сплава, которые в какой-то степени магнитны. Хотя такой сплав, как любое вещество, является магнетиком, он не ферромагнетик, как обычное железо, несмотря на то, что в основном он все же состоит из железа.

Существуют специальные материалы, которые были приду­маны для получения особых магнитных свойств. О некоторых из них я хочу рассказать. Если нужно сделать постоянный магнит, то требуется найти материал с необычно широкой пет­лей гистерезиса, чтобы при выключении тока, когда мы спу­стимся к нулевому намагничивающему полю, намагниченность все же осталась большой. Для таких материалов границы до­менов должны быть «заморожены» на месте как можно крепче. Одним из таких материалов является замечательный сплав АлникоV (51% Fe, 8% Аl, 14% Ni, 24% Со, 3% Cu). Доволь­но сложный состав этого сплава говорит о том кропотливом труде, который надо было затратить, чтоб создать хороший магнит. Сколько терпения потребовалось для того, чтобы, смешивая по-разному пять компонент, проверять раз­ные составы их до тех пор, пока не был найден идеальный сплав! Когда АлникоV затвердевает, у него появляется «вторая фаза», которая, осаждаясь, образует множество ма­леньких зерен и вызывает очень большие внутренние напряжения. Движение доменных стенок в этом материале очень затруднено. А чтобы получить вдобавок нужное строение, Алнико V механически «обрабаты­вается» так, чтобы кристаллы выстраивались в форме продол­говатых зерен в направлении будущей намагниченности. При этом намагниченность, естественно, стремится смотреть в нуж­ном направлении и противостоять эффектам анизотропии. Бо­лее того, в процессе приготовления материал даже охлаждается во внешнем магнитном поле, так что зерна растут с правильной ориентацией кристаллов. Петля гистерезиса АлникоV приве­дена на фиг. 37.12.

Фиг. 37.12. Петля гистере­зиса сплава АлникоV.

Видите, она в 500 раз шире петли гистерезиса мягкого железа, которую я вам показывал (см.фиг.36.8, стр.146). Обратимся теперь к другим сортам материалов. Для изготов­ления трансформаторов и моторов необходим материал, который был бы «мягким» в магнитном отношении, т. е. такой, намагни­ченность которого могла бы легко изменяться, так что даже очень малое приложенное поле приводило бы к очень большой намагниченности. Для этого нужны чистые, хорошо отожжен­ные материалы с очень малым количеством дислокаций и при­месей, так чтобы доменные стенки могли легко двигаться. Ани­зотропию желательно сделать как можно меньше. Тогда если даже зерна материала расположены под «неправильным» углом по отношению к полю, материал все равно будет легко намаг­ничиваться. Мы говорили, что железо предпочитает намагничи­ваться в направлении [100], тогда как никель предпочитает направление [111], так что если мы будем в различных пропор­циях смешивать железо и никель, то можно надеяться найти такую их пропорцию, когда сплав не будет иметь никакого предпочтительного направления, т. е. направления [100] и [111] будут эквивалентны. Оказывается, что это достигается при смешивании 70% никеля и 30% железа. Вдобавок (вероят­но, по счастливой случайности, а быть может, по какой-то фи­зической взаимосвязи между анизотропией и магнитострикционными эффектами) оказалось, что константы магнитострик­ции железа и никеля имеют противоположные знаки. Для сплава этих двух металлов магнитострикция исчезает при со­держании никеля около 80%. Так что при содержании никеля где-то между 70 и 80% у нас получаются очень «мягкие» маг­нитные материалы — сплавы, которые очень легко намагничи­ваются. Они называются пермаллоями. Пермаллои используют­ся в высококачественных трансформаторах (при низких уров­нях сигналов), но совершенно не годятся для постоянных маг­нитов. Приготовлять пермаллои и работать с ними нужно очень осторожно. Магнитные свойства пермаллоя в корне меняются, если его деформировать выше предела его упругости, так что этот материал никоим образом нельзя сгибать. Иначе в резуль­тате возникновения дислокаций, поверхностей скольжения и других механических деформаций проницаемость его умень­шается и границы доменов уже будут двигаться не так легко. Впрочем, былую высокую проницаемость можно восстановить отжигом при высокой температуре.

Полезно для характеристики различных магнитных мате­риалов оперировать какими-то числами. Двумя такими харак­теристиками являются значения В и Н в точках пересече­ния петли гистерезиса с осями координат (фиг. 37.12). Эти значения называются остаточным магнитным полем Вrи коэрцитивной силой Нс. В табл. 37.1 приведены эти характе­ристики для некоторых материалов.

§ 5. Необычные магнитные материалы

Здесь мне бы хотелось рассказать о некоторых более экзо­тических магнитных материалах. В периодической таблице есть немало элементов, имеющих незаполненные внутренние электронные оболочки, а следовательно, и атомные магнит­ные моменты. Так, сразу вслед за ферромагнитными элемента­ми — железом, никелем и кобальтом — вы найдете хром и мар­ганец. Почему же они не ферромагнитны? Ответ заключается в том, что в выражении (37.1) член с К для этих элементов имеет противоположный знак. В решетке хрома, например, направле­ния магнитных моментов атомов чередуются друг за другом (фиг. 37.13, б).

Фиг. 37.13. Относительная ориентация элек­тронных спинов в различных материалах:

а — ферромагнетик;, б — антиферромагнетик; в — феррит.

Так что со своей точки зрения хром все же «магнетик», но с точки зрения технических применений это не пред­ставляет интереса, так как не дает внешнего магнитного эффекта. Таким образом, хром — пример материала, в котором кванто-вомеханический эффект вызывает чередование направлений спинов. Такой материал называется антиферромагнетиком. Упорядочивание магнитных моментов в антиферромагнитных материалах зависит и от температуры. Ниже критической тем­пературы все спины выстраиваются в чередующейся последо­вательности, но если материал нагрет выше определенной тем­пературы, которая по-прежнему называется температурой Кюри, направления спинов внезапно становятся случайными. Этот рез­кий внутренний переход можно наблюдать на кривой удельной теплоемкости. Он проявляется еще в некоторых особых «маг­нитных» эффектах. Например, существование чередующихся спинов можно проверить по рассеянию нейтронов на кристалле хрома. Нейтрон сам по себе имеет спин (и магнитный момент), поэтому амплитуда его рассеяния различна в зависимости от того, параллелен ли его спин спину рассеивателя или противо­положен. В результате нейтронная интерференционная карти­на для чередующихся спинов отлична от картины при случай­ном их распределении.

Существует еще один сорт веществ, у которых квантово-механический эффект приводит к чередующимся спинам элект­ронов, но которые тем не менее являются ферромагнетиками, т. е. их кристаллы имеют постоянную результирующую намаг­ниченность. Идея, лежащая в основе объяснения свойств таких материалов, иллюстрируется схемой на фиг. 37.14.

Фиг. 37.14. Кристаллическая структура минерала шпинель (MgOAl2O3).

Ионы Mg2+ занимают тетраэдрические места, и каждый из них ок­ружен четырьмя ионами кислорода; ионы А13+ занимают октаэдрические места, и каждый окружен шестью ионами кислорода.