Глава 8. Сингулярности

We use cookies. Read the Privacy and Cookie Policy

Глава 8.

Сингулярности

В то время как большая часть аудитории на Техасском симпозиуме 1963 года слушала выступление Джона Уиллера с непониманием, один молодой математик восторженно следил за речью, произносимой на фоне тщательно выписанных на доске уравнений и графиков. «Речь Уиллера произвела на меня громадное впечатление», — вспоминал Роджер Пенроуз. И хотя Уиллер упрямо отказывался принять концепцию существования сингулярностей, он задал правильный с точки зрения Пенроуза вопрос: «Можно ли признать эти сингулярности существенной частью общей теории относительности?». Речь Уиллера на симпозиуме в Техасе возвестила начало нового десятилетия, которое (по выражению одного из учеников Уиллера, Кипа Торна) назовут «золотым веком общей теории относительности», а Роджер Пенроуз станет одним из одаренных мыслителей, посвятивших свою жизнь работе в данной области.

Всю свою жизнь Пенроуз «играл» с пространством-временем: разрезая его, склеивая вместе отдельные фрагменты и доводя модели до предельных значений. Обладая математическим складом ума и интуитивным пониманием пространства и времени, он иначе, чем все остальные, смотрел на вещи. Рисунки, известные как диаграммы Пенроуза, разворачивают пространство-время, открывая его самые странные свойства. Они наглядно показывают, что происходит со светом при приближении к поверхности Шварцшильда, как свет ведет себя, если развернуть отсчет времени в сторону Большого взрыва, и даже как растянуть пространство и время, придав им вид пены на поверхности океана.

Впервые тягу к общей теории относительности Пенроуз ощутил еще студентом, изучая математику в Лондоне. По книге Эрвина Шрёдингера «Структура пространства-времени» он самостоятельно изучил основы. Но по-настоящему задуматься о деталях его заставили пропагандирующие теорию стационарного состояния лекции Фреда Хойла. Было нечто притягательное и вместе с тем странное в описываемой Хойлом Вселенной — она не вписывалась в представления Пенроуза об относительности. Он решил посетить своего брата Оливера, который также был математиком и готовился к получению докторской степени в Кембридже. Роджер надеялся, что Оливер поможет ему разобраться в так привлекающей его странной теории.

Кембридж 1950-х, несмотря на степенную атмосферу вековых монастырей и удушающую ритуальность колледжей и университета, постепенно превращался в весьма привлекательное место. Блестящие изысканные лекции по квантовой механике читал Поль Дирак — английский физик, сыгравший важную роль в доказательстве идентичности квантовых теорий Гейзенберга и Шрёдингера. Герман Бонди отвечал за лекции по общей теории относительности и космологии вместе с Фредом Хойлом, активно продвигающим их совместную концепцию стационарной Вселенной. Кроме того, там работал Деннис Сиама.

Братья Пенроуз встретились в ресторане Кингсвуд в Кембридже, чтобы обсудить радиолекции Фреда Хойла. Роджер не понимал, каким образом в модели стационарной Вселенной галактики могут ускоряться и разбегаться в стороны с таксой скоростью, что в какой-то момент скрываются за космическим горизонтом. С его точки зрения, должно было происходить кое-что другое, что можно было показать при помощи его диаграмм. Оливер указал на соседний столик и сказал: «Можешь спросить Денниса. Он знает об этом все». Он подвел Роджера к Деннису Сиама и познакомил их друг с другом. Они немедленно нашли общий язык.

Сиама был всего на четыре года старше Пенроуза, но уже втянулся в теорию Эйнштейна со страстью, которой он в течение почти пятидесяти лет будет увлекать учеников и коллег. В Институт перспективных исследований он прибыл за год до смерти Эйнштейна. В одной из своих бесед с Эйнштейном Сиама смело и несколько опрометчиво заявил, что он здесь, чтобы поддержать «старика Эйнштейна против всего нового». Эйнштейн посмеялся над его дерзостью. Сиама, пока это было возможно, учился у Поля Дирака, кроме того, его привлекла работа Хойла, Бонди и Голда. Но будучи убежденным сторонником стационарной Вселенной, он не оставлял без внимания открытия радиоастрономов. В дальнейшем его заинтриговали результаты группы Райла. Он видел, каким образом они могут разрушить модель Хойла.

В тот вечер в Кингсвуде Пенроуз объяснил Сиаме, почему галактики не могут исчезать из вида. Они будут тускнеть и издалека казаться замершими во времени аналогично тому, как, согласно выкладкам Оппенгеймера и Снайдера, поведет себя взорвавшаяся звезда при прохождении ее поверхности через радиус Шварцшильда. Сиама увидел, как блестят глаза Пенроуза, и оценил его свежий подход к пространству-времени. Их дружба будет продолжаться пятьдесят лет.

В конце концов Пенроуз переедет в Кембридж, чтобы получить степень доктора математики, но его внимание будет занято математическими странностями, обнаруженными в геометрии пространства-времени. Он отчаянно хотел понять их. Завершив работу над степенью, он решительно погрузился в общую теорию относительности. Следующие несколько лет он путешествовал, работая с Уиллером в Принстоне, с Германом Бонди в Лондоне, с Питером Бергманом в Сиракузах. Наконец, осенью 1963 года он присоединился к группе Шильда в Остине, штат Техас.

Техас был прекрасным местом для занятий общей теорией относительности, ведь все исследования прекрасно финансировались. «Мы не спрашивали, откуда приходят деньги или почему считается, что их имеет смысл тратить на теорию относительности, — говорил Пенроуз. — Но мне всегда казалось, что это просто какая-то ошибка». Одним из его коллег был молодой новозеландский математик Рой Керр. В жарком и влажном климате Техаса Керр боролся с уравнениями Эйнштейна, пытаясь найти для них более сложные и реалистичные решения. Он придумал элегантный набор уравнений, соответствующих простой геометрии пространства-времени. Решение Керра можно рассматривать как обобщенную форму геометрии Шварцшильда. Шварцшильд описывал симметричное относительно точки пространство-время, и именно в этой точке находилась печально известная сингулярность, в то время как решение Керра было симметрично относительно линии, насквозь пронзавшей пространство-время. Он как бы закрутил решение Шварцшильда вокруг оси, вращая пространство-время. Для возвращения к оригинальному решению достаточно было прекратить вращение.

Пенроуз немедленно взялся за результат Керра. Они часами обсуждали открытие с коллегами в Остине, меняя формулировки нового пространства-времени на свой лад. Как и Сиаму, Шильда ошеломил взгляд Пенроуза на вещи. Его математическая интуиция и диаграммы представили решение Керра в совершенно ином свете. Свои удивительно простые и мощные выкладки Керр отправил в журнал Physical Review Letters, который всего несколько лет назад запретил публикации на любые темы, связанные с теорией относительности. Но статья внезапно была принята и за несколько месяцев до Техасского симпозиума в Далласе, в сентябре 1963 года, опубликована. Таким образом, результаты Керра дошли до астрофизиков.

Опасаясь, что презентация Керра окажется слишком сухой и математической, Шильд попытался уговорить Пенроуза выступить вместо Керра. Но Пенроуз не мог пойти на подобный шаг, ведь эта теория была чужим детищем. Беспокойство Шильда имело под собой основания. Когда Керр вышел на сцену, половина участников покинула зал. Керр был молодым и мало кому известным релятивистом, а у многих астрофизиков на тот момент были дела поинтересней. Он выступил перед оставшейся пестрой толпой, но, как вспоминал Пенроуз: «На него не обращали особого внимания». Суть представленных им результатов поняли не многие, а ведь это был первый шаг к обобщению решения Шварцшильда, попытка сделать это решение более реальным и более полезным для астрофизиков. Керр написал для материалов конференции небольшое примечание, но человек, отвечавший за обзор основных результатов симпозиума, его просто проигнорировал. Представленная информация была слишком связана с общей теорией относительности, чтобы астрофизики смогли ее воспринять.

На первом Техасском симпозиуме не было ни одного советского физика. Большая часть интеллектуальных ресурсов Советского Союза была занята ядерным проектом, и времени на общую теорию относительности у них просто не было. Однако многие советские ядерные физики, как и новое поколение релятивистов, появившееся из Манхэттенского проекта в США и работы над радарами в Великобритании, послужили делу возрождения общей теории относительности в Советском Союзе 1960-х.

Советский ядерный проект стартовал поздно. Во время Второй мировой войны все ресурсы шли на фронт, что помешало Сталину привлечь людей к работе над бомбой. Начиная с 1939 года, после статьи Джона Уиллера и Нильса Бора, в которой обсуждалось количество энергии, высвобождаемой при делении ядер тяжелых элементов, казалось, что поток работ по этой теме на Западе иссяк. Для Советского Союза это выглядело как прекращение исследований в области ядерного деления. Сталин начал что-то подозревать в 1942 году, когда советский физик Георгий Флеров в письме к нему обратил внимание на этот странный факт. Он догадался, что американцы ведут работу над бомбой, а значит, пора было тоже включаться в игру. Сразу после окончания войны Сталин привлек советскую научную элиту к работе над проектом бомбы. В команду входили Лев Ландау и Яков Зельдович.

Во время большого террора в конце 1930-х Лев Ландау попал в волну репрессий. Пребывание в тюрьме ожесточило его и заставило потерять в веру в режим, хотя он и продолжал пользоваться его благами. Ландау успел стать легендой, с его именем связывали множество открытий в самых разных областях, от квантовой механики до астрофизики. Он создал собственную физическую школу и обзавелся талантливыми приверженцами, которые были готовы работать на пределе интеллектуальных способностей ради возможности попасть в его окружение. Чтобы стать одним из протеже Ландау, аспиранту нужно было сдать одиннадцать строгих экзаменов, известных как «теоретический минимум Ландау». Экзамены разработал и принимал сам Ландау, и этот процесс иногда занимал до двух лет. Не многие могли преодолеть этот барьер и доказать свою способность работать с таким выдающимся человеком.

Белорусский еврей Яков Зельдович был одаренным студентом, всего на несколько лет младше Ландау. В семнадцать он работал лаборантом, в двадцать четыре получил докторскую степень и быстро стал одним из крупных советских специалистов по физике горения. Его неизбежно должны были привлечь к разработке бомбы, и он блестяще справился с поставленной задачей. С 1945 по 1963 год Зельдович принимал участие в создании сначала первой советской атомной бомбы, которую американцы стали называть «Joe-1», после того как появилась информация о взрыве в августе 1949-го, а потом и ее следующего варианта, «супербомбы». Советский Союз догнал американцев и стал ядерной державой.

Если Зельдович был искренне увлечен атомным проектом, то прошедшего через испытание Лубянкой и испытывающего глубокую ненависть к Сталину Ландау привлекли туда против его воли. И если Зельдович искренне восхищался Ландау, последний испытывал по отношению к своему коллеге и к атомному проекту в целом куда менее позитивные эмоции. Когда Зельдович попытался договориться с руководством о расширении участия Ландау в проекте, Ландау сказал о нем: «Эта сука». После смерти Сталина он заявил: «Все. Его больше нет. Я его больше не боюсь и больше не буду работать [над ядерным оружием]». Тем не менее за вклад в создание советской атомной бомбы оба ученых несколько раз получали Сталинскую премию и были награждены медалью «Герой Социалистического Труда». А в 1962 году Ландау был удостоен Нобелевской премии.

В середине 1960-х Зельдович по-прежнему был на гребне успеха, в то время как Ландау после автомобильной катастрофы потерял способность заниматься физикой. Работу Ландау продолжили его ученики; они первыми в Советском Союзе занялись проблемой сингулярности в пространстве-времени.

Двое молодых людей, прошедших суровую школу учебы у Ландау, Исаак Халатников и Евгений Лившиц, имели достаточную подготовку, чтобы броситься в бездну хитросплетений теории Эйнштейна и попробовать разобраться, что же происходит при сжатии материи под действием ее собственного притяжения.

Оппенгеймер и Снайдер построили решение для крайне простой ситуации — совершенно симметричной сжимающейся сферы. Изначально эта симметрия беспокоила таких ученых, как Уиллер, считавших подобную идеализацию чрезмерной. Поверхность Земли далека от идеала: она покрыта высокими горами, глубокими океанскими впадинами и долинами. А что, если сжимающаяся звезда имеет столь же неправильную форму? Не могут ли эти неровности и нарушения структуры настолько исказить процесс коллапса, что какие-то части начнут разрушаться быстрее остальных, отскакивать и снова подниматься вверх? Ведь в этом случае сингулярность может вообще не сформироваться.

Русские занялись этим вопросом, ослабив насильственно введенную Оппенгеймером и Снайдером симметрию. В расчетах Халатникова и Лившица пространство-время способно различными способами вращаться в произвольных направлениях. Представьте, что вы смотрите прямо на клокочущую массу материи, например на тяжелую звезду, в момент, когда она взрывается и начинает сжиматься. В общем случае этот процесс пойдет неравномерно. Верхний и нижний фрагменты сгустка могут сжиматься быстрее, чем его бока, настолько быстро, что прежде, чем боковые стороны успеют коллапсировать, для верха и низа начнется обратный процесс. И уже не вся материя упадет в центр, неотвратимо сформировав сингулярность, а какие-то части будут двигаться наружу, удерживая пространство-время от коллапса. И только абсолютная симметрия позволит всей материи сжаться одновременно, сформировав в итоге сингулярность. В своей работе, опубликованной в журнале «Советская физика», Халатников и Лившиц пришли к поразительному выводу, что в реальных условиях сингулярности никогда не смогут сформироваться. Решения Шварцшильда и Керра представляют собой абстракции, не имеющие реального воплощения. Выходило, что Эйнштейн и Эддингтон с самого начала были правы.

Временами советские ученые получали разрешение на участие в западных конференциях. На третьей международной конференции по общей теории относительности и космологии, которая прошла в Лондоне в 1965 году, присутствовало более двухсот релятивистов. Результаты Халатникова удостоились пристального внимания. Было очевидно, что в Советском Союзе начали заниматься теорией Эйнштейна, но западным ученым оказалось непросто понять, о чем именно шла речь. Основной советский журнал, «Советская физика», всегда переводился на другие языки с запозданием.

Пенроуз тихо слушал выступление Халатникова. Он полагал, что Халатников не прав, но считал «недипломатичным» высказываться на эту тему. «Практически таким методом ничего нельзя доказать, — произнес он, — в данном случае сделано слишком много допущений. Они не позволяют исключить возникновение сингулярности». На самом деле, в противовес утверждению Халатникова, Пенроуз мог бы доказать, что сингулярности формируются всегда. Причем его результаты были представлены в общем виде, так как он использовал собственное новое представление пространства-времени.

За прошедшие с момента встречи с Сиамой в ресторане Кингсвуд в Кембридже десять лет Пенроуз превратил свои диаграммы в набор правил, определяющих распространение в пространстве-времени света и любой другой материи. Он мог взять произвольное пространство-время и по ряду его основных свойств и виду содержащейся в нем материи узнать, что именно там будет происходить — коллапс и превращение в точку или взрыв и расширение до бесконечности. Применив свои правила к вопросу гравитационного коллапса, который Уиллер называл «проблемой конечного состояния», он получил неоспоримый результат — сингулярность. В итоге появилась статья «Гравитационный коллапс и пространственно-временные сингулярности», отправленная в журнал Physical Review Letters. Как он писал в этой статье: «Отклонения от сферической симметрии не могут препятствовать формированию пространственно-временных сингулярностей». Даже почти полвека спустя эта работа считается шедевром краткости, ясности и строгости: идеальная статья объемом чуть менее трех страниц с краткой постановкой задачи, математическим инструментарием и небольшим абзацем с доказательством. Все проиллюстрировано фирменными диаграммами Пенроуза.

На момент доклада Халатникова Пенроуз уже отправил статью в журнал. Ее вот-вот должны были принять и опубликовать в декабре текущего года, но представленные там приемы были незнакомы большинству собравшихся релятивистов, особенно русским. Когда один из учеников Джона Уиллера, Чарльз Мизнер, взялся оспорить Халатникова, оперируя данными Пенроуза, у него ничего не получилось. Русские с недоверием отнеслись к результатам Пенроуза и отказались признать свой подход ошибочным. «Я спрятался в углу, — вспоминал Пенроуз, — так как чувствовал крайнее смущение».

Однако Пенроуз был прав. И вывод, который теперь называют теоремой Пенроуза, имел далеко идущие последствия. Он гласил, что если общая теория относительности верна, то во Вселенной должны существовать решения Шварцшильда и Керра, эти странные варианты пространства-времени с сингулярностью в центре. Они не были чисто математическими конструкциями. Эйнштейн и Эддингтон ошибались. Четырьмя годами позже свое поражение признали и Халатников с Лившицом. В 1969 году они повторили свои вычисления, на этот раз с одним из своих студентов, Владимиром Белинским. К их ужасу, там обнаружилась ошибка. И если в 1961 году они считали коллапс, приводящий к формированию сингулярности, специфическим и неестественным явлением, которого не могло существовать в нашем мире, с Белинским были получены противоположные результаты. Они по-своему подтвердили теорему Пенроуза: сингулярности формируются всегда. Советские ученые опубликовали полученные результаты на западе, публично признав свою ошибку.

Так Пенроуз доказал неизбежность сингулярностей при гравитационном коллапсе и ответил на вопрос Уиллера о конечном состоянии. Вскоре появилось и более глубокое подтверждение.

Когда сорвалась первая попытка Мартина Райла путем измерения радиоисточников опровергнуть господствующую в Кембридже теорию стационарного состояния, он улучшил результаты измерений. В 1961 году вышел каталог 4С, и большинство радиоастрономов согласилось с тем, что многие из ранее имевшихся неточностей в данных теперь исправлены. Однако конец концепции стационарной Вселенной инициировали ее же сторонники.

Деннис Сиама был активным поборником теории Хойла. Будучи в восторге от квазаров, он дал своему ученику, Мартину Рису, задачу с разных сторон изучить новые измерения Райла. Рис использовал более простой и наглядный подход, чем предпринятое Райлом рассмотрение числа квазаров как функции от потока. Вместо этого он взял подмножество из тридцати пяти квазаров с измеренным красным смещением и поделил его на три группы. В первую группу попали близкие к Земле во временном и пространственном смысле квазары с маленьким смещением. Вторую группу составили квазары со средним смещением, третья же была составлена из объектов с большим смещением, зафиксированных в отдаленном прошлом.

Идея Риса была простой, но удивительно рациональной. В модели стационарной Вселенной, в которой Вселенная со временем не меняется, в каждую из групп должно было попасть примерно одинаковое количество квазаров. Но в действительности в ближайшем к нам временном промежутке квазаров почти не оказалось. Почти все они попали в последнюю группу. Другими словами, судя по всему, количество квазаров со временем менялось — больше всего их оказалось в прошлом, — а значит, Вселенная не могла находиться в стационарном состоянии. График однозначно показал, что эта концепция не работала. «Это был график, изменивший точку зрения Денниса», — вспоминал Рис. С этого момента Сиама уверовал в теорию Леметра, или, как выражался на своих лекциях Хойл, в Большой взрыв и во всё, что из этого следовало.

Последний гвоздь в крышку гроба стационарной теории забили в Нью-Джерси. Арно Пензиас и Роберт Вильсон в одной из лабораторий Белла в Холмделе работали над новым типом антенн. Они хотели модернизировать антенну, этот огромный приемник радиоволн, и использовать ее для галактических измерений. Для составления точной карты Млечного Пути первым делом требовалось определить точность инструментов. Поэтому они направили антенну в пустоту и начали смотреть, насколько хорошую видимость она обеспечивает.

Но пустоты они не обнаружили. Пензиас и Вильсон кое-что увидели, точнее услышали: низкий, мягкий свист, исходящий из пустого пространства. И как они ни регулировали свои инструменты, избавиться от свиста не удавалось. Случайно эти двое наткнулись на след ранней Вселенной, отголоски Большого взрыва.

В конце 1940-х работающий в США русский физик Георгий Гамов предсказал существование пронизывающего всю Вселенную очень холодного света. Он начал с идеи аббата Леметра, утверждавшего, что Вселенная изначально представляла собой горячий, плотный суп, из которого в конце концов появились все прочие элементы. Аргументация была следующей. Представьте Вселенную в ее простейшем состоянии, полную исключительно атомами водорода. Каждый такой атом представляет собой элементарный строительный кирпичик для остальных элементов — удерживаемые электромагнитной силой протон и электрон. Если облучить такой атом достаточным количеством энергии, из ядра можно выбить электрон, оставив одинокий протон плавать в пространстве.

Теперь представим сконденсированный в горячей ванне газ из атомов водорода. Эти атомы будут сталкиваться, перемещаться с места на место и подвергаться бомбардировке энергичными фотонами из носящихся вокруг лучей света. И чем выше температура этой ванны, тем с большей вероятностью электроны будут отрываться от протонов. В очень горячей среде целых атомов водорода практически не останется. Вместо водородного газа Вселенная заполнится свободными протонами и электронами. На ранних стадиях существования Вселенной, когда ее температура превышала несколько тысяч градусов, ее наполняли в основном свободные протоны и электроны. Со временем Вселенная остывала, и электроны связывались ядрами, формируя в основном атомы водорода и гелия, а также крайне небольшое количество более тяжелых элементов и слабый, практически невидимый фоновый свет. Именно его увидели Арно Пензиас и Роберт Вильсон — четкое свидетельство горячего, сконденсированного состояния ранних времен. Это достаточно наглядно доказывало существование Большого взрыва, как пренебрежительно выражался Хойл, а решающий шаг в этом направлении сделал еще один ученик Денниса Сиамы — Стивен Хокинг.

Молодой Хокинг чем-то напоминал Эйнштейна, и именно так его часто называли друзья детства. Он не блистал в школе, был расслабленным, игривым и озорным худеньким мальчиком, который часто нарушал общий порядок и получал удовольствие, развлекая своих товарищей. Но постепенно его все больше начала привлекать наука, и подав документы в Оксфорд, он блестяще прошел вступительные экзамены и собеседование. Учебу он находил до смешного легкой, успевая достаточно хорошо, чтобы произвести впечатление на преподавателей и лекторов. Уже в Кембридже, работая под руководством Сиамы над своей докторской диссертацией, Хокинг обратится к космосу и обнаружил вытекающее из открытия Пензиаса и Вильсона важное следствие.

Стивен Хокинг был на год старше Мартина Риса, и математика общей теории относительности просто очаровала его. Еще в начале работы над докторской диссертацией у него диагностировали болезнь Лу Герига, боковой амиотрофический склероз, и сообщили, что жить ему осталось всего около двух лет. Сначала эта новость совершенно деморализовала его, но потом он решил, что по крайней мере еще два года для работы над диссертацией у него есть. Проблемы со здоровьем заставили его сосредоточиться на работе и попытаться понять, что же на самом деле происходило в начале расширения Вселенной — в сам момент Большого взрыва. Не являются ли сингулярности неизбежным условием не только конечного состояния Уиллера, но и начала времен?

Мчась наперегонки с болезнью, Хокинг смог показать, что расширяющаяся Вселенная в нормальных условиях и в самом деле неизбежно должна была начаться с сингулярности. Последовательно он вместе с южноафриканским физиком и талантливым учеником Сиамы Джорджем Эллисом доказал, что Вселенная с обнаруженным Пензиасом и Вильсоном реликтовым излучением должна была начаться с сингулярного состояния. Вместе с Роджером Пенроузом он создал набор теорем, описывающих практически любую модель расширяющейся Вселенной, которую в то время могли придумать. Как в прошлом, так и в будущем сингулярности были неизбежны — по крайней мере, так показывали расчеты Пенроуза и Хокинга.

На первом Техасском симпозиуме высказывалась гипотеза, что многочисленные удаленные источники радиоволн из каталога Райла могут как-то быть связаны с предсказываемым общей теорией относительности коллапсом сверхтяжелых звезд. Чандра уже отмечал нестабильность и возможность коллапса сверхтяжелых белых карликов, а Оппенгеймер и Снайдер показали, что для еще более тяжелых звезд следующая стадия неотвратимого коллапса проходит через фазу нейтронной звезды. Однако доказательства существования в космосе белых карликов имелись, чего нельзя было сказать о нейтронных звездах. Ситуация изменилась в 1965 году, когда в Кембридж прибыла Джоселин Белл, чтобы приступить к работе над докторской диссертацией в группе Мартина Райла.

Научным руководителем Белл был не сам Райл, а один из его более молодых коллег, Энтони Хьюиш. Хьюиш заставил ее построить из деревянных столбиков и проволочной сетки радиотелескоп, пригодный для определения положения квазаров на длине волны 81,5 МГц. Как вспоминала сама Джоселин: «Первые два года приходилось много и тяжело работать в поле или в очень холодном сарае». Но в подобной ситуации имелись и свои плюсы: «К моменту завершения я была уже настолько сильной, что могла легко работать кувалдой». К 1967 году Белл начала принимать данные на самописец, анализируя в поисках отчетливых сигналов квазаров по 30 метров бумажной ленты в день. Чтобы покрыть все небо, требовалось примерно 120 метров бумаги.

В записях присутствовала одна странная особенность. Через каждые 120 метров возникал пик высотой в четверть дюйма, который Белл затруднялась идентифицировать. Было непонятно, что это за сигнал и откуда он взялся. Без сомнения, с определенного направления приходили периодические импульсы. «Мы назвали их “маленькими зелеными человечками”, — вспоминала Белл. — Я уходила домой с ощущением, что все это мне ужасно надоело». Группа решила пойти напролом и опубликовать информацию о таинственной находке.

В феврале 1968-го в журнале Nature появилась статья под заголовком «Наблюдение быстро пульсирующего радиоисточника». В ней Белл, Хьюиш и их соавторы анонсировали свое открытие: «Маллардской радиоастрономической обсерваторией были зарегистрированы необычные сигналы пульсирующих радиоисточников», после чего следовало смелое заявление: «Это излучение, по всей вероятности, приходит от локальных объектов, расположенных в пределах нашей Галактики. Оно может быть вызвано колебаниями белых карликов или нейтронных звезд». Авторы статьи высказали предположение, что пики на графике соответствовали колебаниям, или пульсациям, в этих плотных компактных радиоисточниках.

Пресса уцепилась за новое открытие, взяв у Хьюиша интервью по поводу его значимости. При этом Белл вспоминала: «Мне журналисты задавали не относящиеся к делу вопросы, например выше ли я, чем принцесса Маргарет». По ее словам, «они повернулись ко мне и спросили мои антропометрические данные, а также сколько у меня было парней… с их точки зрения, именно это было предназначением женщины». Газета Sun поместила новость под заголовком «Девушка, которая обнаружила маленьких зеленых человечков». Название новым невиданным объектам дала газета Daily Telegraph; журналист предложил кратко назвать пульсирующие радиозвезды «пульсарами».

Радиоастрономия снова с избытком предоставила результаты, причем они и в этот раз были получены случайно. Открытие стало знаковым, и в 1974 году руководители Белл Тони Хьюиш и Мартин Райл получили Нобелевскую премию. Сама Белл в список не попала, и многие считают это величайшей несправедливостью в истории премии. Почти через двадцать лет она окажется на этой церемонии в качестве гостя, когда в 1993 году Нобелевскую премию будут вручать астроному Джозефу Тейлору-младшему «Все-таки я там оказалась», — без горечи вспоминает Белл.

Пульсары стали первым осязаемым доказательством существования нейтронных звезд. На самом деле они не пульсируют, а вращаются, что и обусловливает периодичность испускаемого ими сигнала. Именно они были пресловутым недостающим звеном в явлении гравитационного сжатия, постулированном Ландау, изученном Оппенгеймером и дотошно исследованном Уиллером и его учениками. И именно они были последним шагом перед неизбежным формированием сингулярностей Пенроуза.

Яков Зельдович бесстрашно менял области исследований. Один из его студентов вспоминал такой совет: «Трудно, но интересно освоить десять процентов в любой области. Путь от десяти до девяноста процентов понимания — это одно удовольствие и истинное творчество. А вот пройти следующие девять процентов бесконечно тяжело и далеко не каждому под силу. Последний процент безнадежен». Из этого Зельдович делал вывод: «Разумнее вовремя взяться за новое дело и радоваться непрерывному созиданию».

Как и Уиллер, Зельдович перешел от ядерных исследований к теории относительности, когда ему было за сорок, и создал одну из самых целеустремленных групп в мире. Статьи, которые Зельдович писал в соавторстве со своими учениками, были практически импрессионистскими и часто содержали странное вступление, например: «Крестный отец психоанализа профессор Зигмунд Фрейд учит нас, что поведение взрослых зависит от опыта, приобретенного в раннем детстве. Перед нами стоит сходная проблема — понять настоящую структуру Вселенной исходя из ее предшествующего поведения». Эти статьи напоминали лаконичные эссе с небольшим количеством уравнений, минимально необходимым для иллюстрации точки зрения автора. При переводе на английский они с трудом поддавались расшифровке. Однако со временем их по праву стали считать настоящими жемчужинами релятивистской астрофизики.

После смены сферы интересов Зельдович занялся поисками застывших звезд — именно так в то время называли в СССР сколлапсировавшие звезды Шварцшильда и Керра. Эти звезды были невидимы, не испускали света и не имели отражающей или блестящей поверхности. Зельдович не мог примириться с мыслью, что эти странные объекты скрыты от наблюдений, ведь они сильно искажали окружающие пространство и время. Но как он рассказывал своим ученикам, они должны неумолимо притягивать все, что оказывается рядом. Этот эффект заставлял предположить, что наблюдать застывшие звезды можно, хотя и не непосредственно, а опосредованно. Например, если Солнце подойдет слишком близко к такой звезде, оно начнет вращаться вокруг нее подобно тому, как Луна вращается вокруг Земли. Так как увидеть застывшую звезду невозможно, создастся впечатление, что Солнце перемещается само по себе, совершая прецессионные колебания относительно странной орбиты, не имеющей центра. Глядя на колебания звезд, Зельдович и его группа предположили, что иногда звезда, выглядящая как отдельный объект, может оказаться частью такой бинарной системы.

При этом Зельдович высказал гипотезу, что застывшие звезды не только заставляют своих партнеров двигаться по кругу, они должны их полностью разрушать. Он сделал очень простое допущение: материя, попавшая в гравитационное поле застывшей звезды, должна приобрести скорость, близкую к скорости света, при этом конденсируясь и увеличивая свою температуру. А по мере того как материя смешивается и соударяется, нагреваясь, и падает на застывшую звезду (этот процесс стали называть аккрецией), она испускает энергию. Аккреция вблизи горизонта Шварцшильда столь сильна, что может высвобождать до 10% энергии массы покоя. Это настолько потрясающее количество, что данный процесс генерации энергии можно считать самым производительным во Вселенной. Поэтому в короткой статье, в 1964 году опубликованной в журнале Доклады академии наук, Зельдович продолжил развивать гипотезу о том, что вокруг застывших звезд вырабатывается ошеломляющее количество энергии, вполне достаточное для объяснения слишком ярких квазаров, обнаруженных радиоастрономами. Одновременно к этому же выводу пришел американский астроном из Корнельского университета Эдвин Солпитер: избыточное радиоизлучение может исходить от массивных объектов, вес которых составляет больше миллиона масс Солнца, или, как он выразился, «объектов чрезмерной массы и относительно маленького размера».

На этом Зельдович не остановился. Вместе со своим молодым коллегой Игорем Новиковым он применил данные рассуждения к двойным системам. Примером такой системы могла бы послужить, скажем, нормальная звезда, вращающаяся вокруг застывшей. С их точки зрения, огромное гравитационное притяжение должно «срывать» с верхних слоев обычной звезды весь газ. При этом, как однажды выразился Роджер Пенроуз, вы будете «опустошать ванну размером с Лох-Ломонд через слив обычных размеров». На газ начнет влиять такая сила, что выделится фантастическое количество электромагнитного излучения с очень высокой энергией, известного как рентгеновское. Значит, по мнению Зельдовича и его ученика, нужно было искать рентгеновское излучение.

Так как связь между сколлапсировавшими, или застывшими, звездами и квазарами становилась все более очевидной, в статьях астрономов и астрофизиков все чаще стало фигурировать имя Шварцшильда. Однако как годы спустя вспоминал Уиллер, название, которым пользовался он и его американские коллеги, — «полностью сколлапсировавший гравитационный объект» — было чрезмерно громоздким, и «когда эту конструкцию приходится произносить десятки раз, поневоле начинаешь искать что-нибудь получше». В 1967 году на конференции в Балтиморе один из присутствовавших предложил термин черная дыра. Уиллер принял предложение, и термин закрепился.

В 1969 году кембриджский коллега Денниса Сиамы Дональд Линден-Белл написал в одной из своих статей: «Вывод, что столь массивные объекты в пространстве-времени являются ненаблюдаемыми, в корне неверен. Я считаю, что мы в течение долгих лет наблюдаем их косвенным образом». Он утверждал, что массивные черные дыры в центре галактики засасывают окружающую материю. И этот процесс, как писал Пенроуз, напоминает с журчанием уходящую через слив воду в ванне. Вращающийся вокруг дыры газ принимает форму плоского диска, напоминающего кольца Сатурна, а вся система начинает вращаться по спирали вокруг этой оси. Ядра галактик, разогреваемые этими аккреционными дисками, превращаются в настоящие маяки, и Линден-Белл брался показать, каким образом возникает и испускается энергия. Кроме того, Мартин Рис вместе с Деннисом Сиамой решили построить детальную модель квазара, объясняющую все его странные свойства, включая размер, расстояние до него, скорость мерцания и пульсации, диапазон испускаемой энергии. За следующие несколько лет Рис и Линден-Белл со своими студентами и аспирантами в Кембридже смогли разработать красивую и подробную модель фейерверков, окружающих квазары и радиоисточники. Мозаика сложилась.

В конце концов обнаружили и рентгеновское излучение, о котором говорили Зельдович и Новиков. Начиная с 1960-х группа под руководством итальянского физика Риккардо Джаккони запускала за пределы земной атмосферы ракеты, которые в течение нескольких минут должны были регистрировать рентгеновское излучение. Оказалось, что разбросанные по небу яркие пятна этого излучения затмевают планеты Солнечной системы. В начале 1970-х с платформы, расположенной рядом с кенийским городом Момбаса, был запущен спутник Uhuru, единственной целью которого была регистрация небесного рентгеновского излучения. Это мероприятие имело грандиозный успех, так как его результатом стало превосходное измерение более трехсот рентгеновских объектов.

В число измеренных спутником Uhuru объектов попал Лебедь Х-1, исключительно яркий источник из созвездия Лебедя. Он был открыт в 1964 году во время суборбитального полета, но Uhuru обнаружил чрезвычайно быстрое мерцание его рентгеновского излучения, ясно указывающее на невероятную компактность этого объекта. За данными Uhuru быстро последовали наблюдения в радио- и оптическом диапазонах, подтвердившие правильность предсказаний Зельдовича и Новикова. Была обнаружена звезда, медленно утрачивающая свою оболочку и слегка колеблющаяся, как будто притягиваемая невидимым плотным объектом с массой, более чем в восемь раз превышающей массу Солнца. Это было первое доказательство существования черной дыры, пока не бесспорное, но весьма вероятное. Источником рентгеновского излучения был маленький, мощный, невидимый объект.

Летом 1972 года Брайс и Сесиль Девитт организовали летнюю школу в коммуне Лез-Уш, расположенной во Французских Альпах. Среди приглашенных были молодые релятивисты, воспитанники Сиамы, Уиллера и Зельдовича, уже успевшие получить мировое признание: Брэндон Картер и Стивен Хокинг из Кембриджа, Кип Торн, его студент Джеймс Бардин, а также Ремо Руффини из Калтеха и Принстона, Игорь Новиков из Москвы. Все они были предсказателями черных дыр.

«История необыкновенного превращения за менее чем десятилетие общей теории относительности из тихой исследовательской гавани, служившей приютом горстке теоретиков, в передовой рубеж, привлекающий все больше чрезвычайно талантливых молодых людей, теперь известна всем, — писал Девитт в предисловии к протоколу встречи в Лез-Уше. — Ни один объект или концепция не олицетворяют нынешнюю стадию эволюции более полно, чем черные дыры». Встреча стала кульминацией десятилетия с момента феноменального открытия.

Эйнштейн и Эддингтон глубоко ошибались. К 1967 году признал свою ошибку даже Уиллер, согласившись с возможностью существования в природе сингулярностей, предсказанных общей теорией относительности. Решение, найденное Шварцшильдом на полях сражений Восточного фронта, и открытие, сделанное Керром жарким техасским летом, соответствовали реальным объектам. Это были настоящие конечные пункты гравитационного коллапса. Предсказанные общей теорией относительности, неотвратимые и простые, они могли творить настоящие чудеса: формировать мощные квазары и срывать со звезд газовую оболочку. Радионебо снова и снова демонстрировало дразнящее мерцание, а обнаруженный хаос рентгеновского излучения, казалось, указывал на маленькие плотные объекты. Окончательные измерения еще не были произведены, но существование черных дыр становилось неизбежностью. Делались ставки, какие из странных наблюдаемых объектов могли бы быть черными дырами. Они практически стали реальностью.

За предыдущие годы собравшиеся в Лез-Уше сформировали мнение, что обнаруженные в природе черные дыры должны быть столь же математически простыми, как решения Шварцшильда и Керра. Кроме того, Эзра («Тэд») Ньюман из Сиракьюсского университета слегка расширил решение Керра, добавив в него электрически заряженные черные дыры, поэтому в полном решении в рамках общей теории относительности черные дыры характеризуются тремя параметрами: массой, моментом импульса и электрическим зарядом. Это потрясающий результат. Почему черная дыра не может с одной стороны иметь немного большую массу, подобную горе на поверхности Земли, скомпенсированную меньшей массой с другой стороны, например впадиной? Почему невозможен отступ в одну из сторон с сохранением массы? На самом деле можно себе представить черные дыры разного вида с одинаковыми массой, моментом импульса и зарядом, но каждая с собственными характеристиками. Однако математика доказала обратное, однозначно показав, что общая теория относительности не допускает подобных усложнений. Холмы выравниваются, впадины заполняются, складки разглаживаются. Черные дыры с одинаковыми массой, моментом импульса и зарядом быстро становятся совершенно одинаковыми, неотличимыми друг от друга. Уиллер описал подобное единообразие фразой «Черные дыры не имеют волос», а доказательство этого факта получило название теоремы «об отсутствии волос».

Встреча в Лез-Уше показала, что происходит, когда за решение больших проблем принимаются великие умы. Вот как вспоминает этот период Мартин Рис: «Понять сущность черных дыр пытались три большие группы: в Москве, Кембридже и Принстоне. И я всегда чувствовал среди них единомыслие». И действительно, во времена изоляции Востока и Запада их совместные встречи двигали науку вперед. Кип Торн и Стивен Хокинг посещали в Москве Зельдовича, сравнивая данные по аккреционным дискам, гравитационному коллапсу и сингулярностям. Такую же важность имели короткие и сложные поездки советских физиков на запад. Вот как вспоминал о Техасском симпозиуме 1967 года, на этот раз проводившемся в Нью-Йорке, Игорь Новиков: «Несмотря на наши отчаянные усилия собрать как можно больше информации и поговорить с как можно большим числом коллег, мы физически не могли обсудить все интересующие нас темы». Годы спустя, на встрече в Лез-Уше в 1972 году Новиков и Торн станут соавторами статьи, посвященной аккреционным дискам.

За десять лет отношение к общей теории относительности Эйнштейна изменилось. Техасский симпозиум стал регулярным мероприятием, собирая сотни астрофизиков, многие из которых считали себя релятивистами. Как сказал Роджер Пенроуз: «Я видел, как черные дыры превращаются из математической абстракции в объект, в существование которого люди действительно верят». Поколение, родившееся в золотой век общей теории относительности, занимало ведущие позиции в лучших университетах. В Великобритании Мартин Рис и Стивен Хокинг возглавили кафедры в Кембридже, Роджер Пенроуз — в Оксфорде. В Соединенных Штатах студенты Уиллера стали сотрудниками Калтеха, Мэриленда и других престижных университетов, как и ученики Зельдовича в Советском Союзе. И все это благодаря работе над общей теорией относительности. Судя по всему, теория Эйнштейна впечатляющим образом стала частью большой физики.

Данный текст является ознакомительным фрагментом.