ГЛАВА ДВЕНАДЦАТАЯ,

We use cookies. Read the Privacy and Cookie Policy

ГЛАВА ДВЕНАДЦАТАЯ,

в которой обсуждаются «школьные» вопросы: что такое энергия и всегда ли она сохраняется? Читатель узнает о глубокой связи между энергией и временем и об удивительных парадоксах теории относительности

Во всех предыдущих главах, шла ли речь о явлениях внутри элементарных частиц или о процессах в далеком космосе, всегда упоминалась энергия. Она — краеугольный камень современной науки. Не исчезает, и не возникает, только переходит из одной своей формы в другую. Но ведь мы сказали, что в мире нет абсолютных свойств, почему же мы тогда так уверены в универсальности энергии?

Странный вопрос, скажет читатель. Ведь еще более 200 лет назад Парижская академия вынесла решение не рассматривать проектов вечного двигателя и только потому, что всякому двигателю нужна энергия... Верно, а как быть, если в каких-то процессах энергия просто не существует, когда нельзя даже ввести такого понятия?

Но тогда нет и массы, возразят мне, ведь из теории относительности известно, что энергия и масса, пропорциональны друг другу, вспомните знаменитую формулу Е=mc2 !

Вот как раз в общей теории относительности и проявляются трудности с энергией и массой. Да еще такие, что некоторые ученые сомневаются в ее справедливости. Не так уж много, говорят они, у этой теории экспериментальных подтверждений... Как бы то ни было, именно в этой области сегодня центр споров и теоретических дискуссий.

Еще древние греки пришли к мысли о том, что ничто в природе не исчезает без следа и не возникает из ничего. Но строгое количественное выражение эта мысль получила значительно позже. Наш соотечественник Михаил Васильевич Ломоносов и французский химик Антуан Лавуазье сформулировали закон сохранения вещества, а 100 лет спустя, в середине прошлого века, немецкие ученые Роберт Майер, Герман Гельмгольц и английский инженер Джеймс Джоуль установили закон сохранения и превращения энергии.

И как это часто бывает с великим открытием, его идея витает, в воздухе, догадки и намеки встречаются в работах многих современников, и вместе с тем решающий шаг требует не только гениальной интуиции, но и просто большой силы воли и смелости. Новую идею легко критиковать — одним она кажется ненужной и необоснованной, другие указывают на ее логическое несовершенство, третьи борются с ней потому, что не доверяют ее автору.

Майеру его открытие принесло несчастье. Мысль о сохранении и превращении энергии пришла к нему во время морского путешествия, в тропиках, когда он, будучи судовым врачом, оперировал больного. Он заметил, что у того венозная кровь не такая темная, какой она бывает в северных странах. Сначала он даже испугался: не задел ли артерию? А затем догадался, что на юге для поддержания теплоты при более высокой температуре в организме должно окисляться меньше питательных веществ, чем на севере.

Идея о круговороте энергии, о бесконечной ее циркуляции из одних форм в другие целиком завладела Майером, и всю последующую жизнь он посвятил ее доказательству. К сожалению, его рассуждения на первых порах содержали много неточностей физического характера, будучи основанными на примерах из физиологии и химии, они с трудом воспринимались физиками. Близкие люди совсем его не понимали; его одержимость научной идеей они принимали за помешательство. Он пытался покончить самоубийством, получил тяжелое воспаление мозга и несколько лет провел в доме для душевнобольных.

С позиции современных знаний просто поразительно, почему с таким трудом воспринималась мысль о том, что всеми явлениями природы «управляет» одна и та же величина — энергия, которая никогда не исчезает, а только переходит из одного своего вида в другой. А ведь частные случаи этого закона были хорошо известны, например для механических процессов (именно к этому случаю и относилось решение французских академиков не рассматривать проектов вечного двигателя).

Крупные теоретические обобщения всегда сопровождаются ломкой привычных представлений и поэтому принимаются с большим трудом. Сто лет назад сопротивление и споры вызывала идея всеобщности энергии, а теперь многим из нас кажется невероятной мысль о том, что в природе могут быть явления, в которых нет энергии. Мы привыкли считать энергию абсолютной, универсальной величиной, существующей и применимой всегда и всюду. Теории, в которых нет закона сохранения энергии, обычно уже заранее трактуются как неверные. Но оправдано ли это? Не напоминает ли эта предвзятость знаменитый аргумент из чеховского «Письма к ученому соседу»: «...этого не может быть, потому что этого не может быть никогда»? Когда дело касается новой теории, категориями «возможного» и «невозможного» следует пользоваться очень осторожно. Процессы или соотношения, невозможные в круге одних, привычных явлений, могут стать возможными в круге других явлений. Заведомо неверными следует считать лишь те теории, которые противоречат законам природы в той области, где они, эти законы, хорошо и надежно проверены.

Долгое время законы сохранения вещества и энергии существовали порознь, пока специальная теория относительности не объединила их с помощью упоминавшегося уже соотношения = mc2. Получается, что масса и энергия неразрывно связаны между собой, и в системе, где скорость света равна единице, они просто равны друг другу. Однако из этого вовсе не следует, что вещество — не что иное, как «уплотненная» энергия. Ведь масса — не само вещество, а одно из его свойств, величина его инертности, сопротивляемости изменению движения. И вот эта величина равна энергии — другой величине, характеризующей движение.

В научно-популярной, а иногда и в специальной литературе встречаются выражения вроде того, что при распаде атомного ядра «часть его массы переходит в энергию осколков». Это неточные, жаргонные выражения. Энергия может изменять свою форму, в частности, запасенная внутриядерная энергия — превратиться в кинетическую энергию осколков; часть вещества при этом может перейти в электромагнитное поле (атомный взрыв сопровождается световой вспышкой), но масса всегда остается строго постоянной.

Соотношение между массой и энергией — очень трудный вопрос, к пониманию которого физики пришли далеко не сразу. В начале нашего века они с удивлением обнаружили, что масса тел не остается постоянной, а зависит от их скорости. А поскольку тогда считалось совершенно очевидным, что масса и материя — одно и то же, многим показалось, что материя может исчезать и возникать вновь. Получалось, что первичной в мире является не сама субстанция, а нечто нематериальное, связанное с ее движением. На глазах физиков распадались основы их науки, отказывались служить самые исходные ее представления. Зашаталась, можно сказать, вся картина мироздания — ведь ее фундаментом была физика! Это было время, когда даже наиболее талантливые физики усомнились в возможности примирить возникшие противоречия.

Выход нашла материалистическая философия. Вначале некоторые ученые и вместе с ними философы идеалистического толка были склонны отказаться от понятия материи, считая его устаревшим, вроде представления о флогистоне. Первоосновой мира они предложили считать энергию. Правда, при этом сразу же возникал трудный вопрос: как можно говорить об энергии движения, если нет того, что движется? Последовательное развитие таких взглядов в конечном счете приводило не к научному, а к религиозному миропониманию. Выход был в том, чтобы не отказываться от понятия материи, а основываться на более точном ее понимании. Масса — это не материя, а всего лишь одна из многих ее характеристик. Ее изменение вовсе не означает, что материя исчезает или рождается из ничего. Этот выход из кризиса, поразившего физику в начале XX в., был указан В. И. Лениным в его знаменитой книге «Материализм и эмпириокритицизм». Мастерски владея методами философского анализа, Ленин не был физиком, но он сумел разобраться в сложных вопросах современной ему науки и указать путь, которого не видели сами физики. Это ли не самый яркий пример того, как марксистская философия помогает естествознанию в решении конкретных его проблем!

Массой и энергией обладают все известные нам виды материи. Правда, не совсем ясно, как быть с гравитационным полем... Однако прежде чем перейти к гравитации, мы должны познакомиться с теоремой, которая связала энергию и время.

...Даже благожелательно настроенные коллеги не могли утверждать, что приват-доцент Геттингенского университета Эмми Неттер — привлекательная женщина. Невысокая, плотная, с громким и неприятным голосом, как вспоминают знавшие ее люди, она к тому же была весьма небрежна в своих манерах и одежде. Она больше походила, говорят они, на энергичную и очень близорукую прачку, чем на преподавателя университета, и грации не стояли у ее колыбели. Однако если греческие боги и богини имели обыкновение нисходить с Олимпа к новорожденным, то у изголовья маленькой Эмми наверняка стояла покровительница наук Афина. По своим интеллектуальным данным Неттер была женщиной выдающейся. Именно ей современная наука обязана несколькими выдающимися открытиями и идеями, в том числе замечательной теоремой о том, что каждой симметрии физической системы соответствует свой особый закон сохранения.

Симметрий много: при отражении, при поворотах и вращениях, при сдвигах... И каждый раз, когда система обладает какой-либо симметрией, она подчиняется соответствующему закону сохранения. Эта теорема имеет сложное математическое доказательство, однако физический смысл ее понять нетрудно. Дело в том, что любая симметрия уменьшает свободу системы, накладывая на нее определенные ограничения. Выражением этих ограничений и является закон сохранения. Это дополнительная связь между параметрами системы, ограничение их изменений.

Если быть более точным, придется добавить, что теорема Неттер относится к так называемой непрерывной симметрии. Свойства физических процессов никак не изменятся, если сдвинуть начальную точку отсчета времени или непрерывно смещать и поворачивать пространственную систему координат. По отношению ко всем таким преобразованиям физические законы симметричны или, как говорят, инвариантны. Так вот, Неттер доказала, что если течение времени равномерное и ни один его момент не выделен по сравнению с другим, то в любой изолированной системе должен выполняться закон сохранения энергии. Из условия однородности, полного равноправия пространственных координат вытекает закон сохранения импульса, а изотропия пространства, то есть отсутствие в нем каких-либо выделенных направлений, приводит к закону сохранения углового момента. И наоборот, нарушение пространственно-временной симметрии должно приводить к удивительным явлениям: изолированное тело в состоянии само по себе, без всяких внешних причин, ускоряться или замедляться, способна возрасти или уменьшиться скорость вращения небесных тел, может нарушаться энергетический баланс реакций и так далее. Для жителей несимметричного мира все это выглядит так, как если бы само пространство-время стало действовать на погруженные в него объекты.

Вывод Неттер о том, что законы сохранения энергии, импульса и момента связаны с фундаментальными свойствами окружающего нас пространства и времени, то есть зависят от космологии нашего мира, это, без сомнения, одна из самых выдающихся физических идей века. Правда, сами физики далеко не сразу осознали ее значение. В течение нескольких десятилетий теорема Неттер. оставалась в тени, и знали о ней больше математики, чем физики.

Эмми Неттер не довелось стать свидетелем триумфа своей теории. Несмотря на выдающиеся научные достижения, ей долго не присуждали звания приват-доцента. В кайзеровской Германии, где интересы женщин сознательно ограничивались «тремя К» — Kirche (церковь), Kuche (кухня), Kinder (дети),— это выглядело бы вопиющим нарушением традиций. Выдающийся геттингенский математик Давид Гильберт, потеряв терпение, однажды сказал с горькой и грубоватой иронией:

— Не вижу, почему пол кандидата должен быть помехой для присуждения ему ученого звания. В конце концов университет — не баня.

Позднее, уже в 30-х годах, спасаясь от преследований нацистов, Неттер эмигрировала из Германии в далекую Америку и там вскоре умерла.

Открытая ею теорема позволяет совершенно по-новому взглянуть на границы применимости законов сохранения. Ведь трудно думать, что равномерность времени и однородность пространства являются всеобщими, не знающими никаких исключений свойствами. Наука давно отказалась от представлений о том, что в природе существует единое, ни от чего не зависящее время и абсолютное бесконечное пространство, в которое погружены все тела. Можно ожидать, как мы уже говорили, радикального изменения свойств пространства и времени в ультрамалом, где становятся возможными спонтанные флюктуации скорости течения и далее самого направления времени, а метрика пространства оказывается зависящей от времени. В развитии космоса также могут быть особые, выделенные моменты времени, тот же Большой взрыв, например, которым началось развитие нашей Вселенной. Все это заставляет предполагать, что при определенных условиях закон сохранения энергии может и не соблюдаться.

Вот какие далеко идущие выводы заставляет сделать теорема Неттер! Удивительно ли, что часть ученых восприняла ее с недоверием?

Однако как не заманчиво открыть процессы, которые не подчиняются закону сохранения энергии, нельзя все же забывать, что в круге изученных явлений этот закон никаких исключений не знает. В попытках найти нарушения этого или других великих законов сохранения было выполнено огромное количество весьма остроумных и изощренных экспериментов. Скрупулезно анализировались эксперименты по поиску анизотропии и пространственно-временной неоднородности в доступной нашим приборам части Вселенной. Никаких аномалий! Различие в скорости света, например, распространяющегося по разным направлениям («эфирный ветер», характеризующий степень анизотропии пространства), не превосходит стомиллионной доли процента. Скорость течения или, как еще говорят, ритм времени также остается совершенно неизменным в пределах точности современных приборов. Вечного двигателя не построишь — эта школьная истина остается незыблемой.

На основе закона сохранения энергий был сделан ряд выдающихся открытий. Так, к концу 20-х годов выяснилось, что энергия электронов, вылетающих при радиоактивном распаде ядер, изменяется от случая к случаю. Куда девается разница — оставалось загадкой. Не экспериментальное ли это доказательство того, предположил Нильс Бор, что энергия в микропроцессах сохраняется лишь в среднем, статистически? Против выдающегося физика, к мнению которого прислушивались все, решился выступить швейцарский теоретик Вольфганг Паули. Нет, говорил он, закон сохранения энергии настолько фундаментален, что нужно допустить иное: вместе с электроном рождается неуловимая пока на опыте частица. Она-то и «крадет» недостающую энергию. Свойства этой частицы должны быть совершенно необычными: во-первых, она практически ничего не весит, а во-вторых, почти не взаимодействует с окружающим веществом. Частица-невидимка, ускользающая из всех расставленных физиками ловушек (позднее итальянский физик Энрико Ферми придумал ей название — нейтрино, то есть «нейтрончик»)! Спустя 23 года предсказанные Паули нейтрино были обнаружены в экспериментах, а закон сохранения энергии снова, в который раз, остался неуязвимым.

С помощью этого закона были обнаружены сверхкороткоживущие частицы — резонансы, объяснены многие парадоксальные явления квантовой физики. Поэтому сохранение энергии рассматривается в настоящее время как одно из основных требований, которым должны удовлетворять физические теории. И лишь та теория, которая позволит объяснить значительно более широкий круг вопросов, чем ныне известные теории, может устоять против бритвы Оккама и пренебречь этим критерием. Многие физики считают, что таким свойством обладает теория гравитации Эйнштейна.

Но не будем забегать вперед... Зададимся сначала вопросом: может ли быть движение без энергии? Сначала ответ кажется очевидным: раз есть движение, должна быть и энергия, как же может быть иначе? Давайте, однако, рассмотрим внимательнее, что такое энергия.

Этот термин впервые ввел в обиход в начале прошлого века английский физик Томас Юнг, хотя под названием «живая сила» понятие энергии уже давно использовалось учеными. В физике известно много различных видов энергии, но наиболее общий подход к понятию энергии был найден не физиком, а философом, и это был не кто иной, как Фридрих Энгельс. На протяжении всей книги нам приходится в той или иной мере касаться философских вопросов, и это естественно, ведь физика изучает основы мироздания, чего без философского анализа делать немыслимо.

Большинство из нас еще из школьных учебников помнит, что энергия — это запасенная работа. В возможности совершить работу как раз и состоит то общее, что объединяет различные виды энергии. Что же такое работа, мы имеем представление из повседневной практики. В самом же общем случае Энгельс связал работу со способностью различных видов материи изменять форму своего движения. Переход от механического движения к тепловому, от теплового к электромагнитному и так далее всегда сопровождается работой. А так как движение в философии понимается очень широко — как любое изменение свойств и качеств материи, то, казалось бы, можно сделать вывод о том, что работа и энергия — величины совершенно универсальные, присущие любым физическим процессам и явлениям. Но это не так.

Энгельс в очень общей форме выразил то основное, что характеризует работу и энергию, и это справедливо и точно. Но отсюда вовсе не следует, как кажется некоторым ученым, что эти величины связаны с любым видом движения. Ведь исходя из того факта, что яблоко — плод, растущий на дереве, мы не станем утверждать, что на любом плодовом дереве обязательно должны расти яблоки. В природе могут существовать и такие формы движения, с которыми энергия не связана, она для них не имеет смысла. Иначе говоря, в природе возможно движение без энергии, не нарушение закона сохранения энергии, а как бы его отсутствие в определенных обстоятельствах.

В своих работах Энгельс не раз писал об ограниченности всякого свойства, любой физической величины. Энергия — не исключение. Можно не сомневаться, что в будущем появятся теории, в которых место энергий займет какая-то другая, возможно, связанная с ней, но более общая величина. Природа, как мы не раз убеждались, неисчерпаема.

Как уже говорилось, в нашем восприятии окружающего мира мы похожи иногда на очень близорукого человека, который снял очки, отчего мелко напечатанный текст кажется ему сплошным серым фоном. Заметить неоднородности можно лишь сквозь «очки» будущих физических экспериментов. И тогда, подсказывает нам философия, мы убедимся, что закон сохранения энергии — это только инфраструктура очень сложного «узора» физических процессов.

Ну а если забыть о философии и на минутку все-таки допустить, что энергия существует всегда и везде, то подобное допущение придется сделать также для импульса, углового момента, электрического заряда и для всех других величин, которые пока что подчиняются строгим законам сохранения. Согласитесь, что такая картина мало чем отличается от представлений древних мыслителей, которые считали, что весь мир состоит из универсальных и неизменных первичных сущностей — огня, воды, земли, воздуха.

Конечно, пока все это — общие рассуждения. Более убедительным было бы указать хотя бы один конкретный пример, когда понятие энергии «не работает» или по крайней мере наталкивается на определенные трудности. Что ж, таким примером может служить теория гравитации Эйнштейна.

Новая теория сравнительно легко пробивает себе дорогу, если она является ответом на экспериментальные открытия. Теорию поддерживает сам факт ее согласия с опытом. Так развивалась, например, в 20-х годах квантовая механика. Хотя ее идеи выглядели чрезвычайно парадоксальными, они объясняли строение атома и предсказывали множество явлений, которые быстро находили подтверждение в опытах. Эксперимент и теория как бы подталкивали друг друга.

Все становится значительно сложнее, когда эксперимент неплохо объясняется уже имеющимися теориями, и новая теория создается главным образом исходя из логических соображений. Тогда основным «оружием» новой теории становится ее концептуальное совершенство — ее красота, как говорят физики. Именно так было создано самое сложное теоретическое построение современной физики — эйнштейновская теория пространства, времени и тяготения, которую из-за того, что она рассматривает физические явления относительно любых, произвольно движущихся систем координат, часто называют общей теорией относительности. По сложности ее превосходит лишь «теория суперобъединения», сама основанная на теории Эйнштейна и включающая ее в себя как частный случай.

Размышления о природе гравитации увлекли Эйнштейна, когда ему было немногим более 25 лет, и не оставляли в течение всех последующих 50 лет его жизни. Он довольно быстро уяснил себе глубокую связь, существующую между гравитацией и пространством. Более того, открытые незадолго до этого Лоренцем формулы для перехода от одной движущейся системы координат, к другой говорили, что пространство нельзя рассматривать отдельно от времени. Три пространственные координаты и время входили в эти формулы так симметрично, что можно было говорить об едином четырехмерном пространстве-времени. Но с каким конкретным свойством пространства-времени следует связать силу тяготения, оставалось неясным.

Помог профессор математики Цюрихского политехникума Марсель Гроссман, с которым Эйнштейн дружил еще в студенческие годы. Один их общий знакомый вспоминал впоследствии, как, приехав однажды в Цюрих, усталый, измученный безуспешными попытками найти адекватное математическое выражение своей идее, Эйнштейн обратился к своему другу:

— Гроссман, ты должен мне помочь, иначе я сойду с ума!

Цюрихский математик слабо разбирался в физике, зато хорошо был знаком с теорией искривленных многомерных пространств, разработанной Риманом. Выслушав Эйнштейна, он сразу сообразил, что это как раз то, что ему нужно.

Чтобы создать теоретическую механику, Ньютону потребовалась совершенно новая область математики — дифференциальное и интегральное исчисление. Максвелл в основу своей электромагнитной теории положил новый математический аппарат — многомерные дифференциальные уравнения. Гравитационная теория продолжила эту тенденцию и ввела в физику многомерную риманову геометрию. Мощный математический аппарат помог Эйнштейну продвинуться очень далеко в понимании свойств гравитационного поля. Именно тогда Эйнштейн пришел к основным идеям общей теории относительности и к самой главной мысли о том, что силу тяготения следует связать с кривизной нашего пространства. Уравнения же этой теории вывел Гильберт.

Он был старше Эйнштейна почти на 20 лет, и это к нему по праву перешел от Гаусса негласный титул «короля математиков». Идеи Гильберта оказали на современную математику такое же влияние, как идеи Эйнштейна на физику. Но, пожалуй, самым важным, что сближало этих ученых, было то, что они оба стремились найти единую, цельную картину мироздания. Идеалом Эйнштейна была теория некоего единого поля, из которой, как частный случай, можно было бы вывести уравнения для всех известных нам частиц и связывающих их взаимодействий. Гильберт старался вывести всю математику и даже физику из нескольких максимально общих исходных аксиом. И хотя эти идеи оказались неосуществимыми — природу одной теорией описать нельзя,— метод Эйнштейна и Гильберта оставил глубокий след в науке.

Уравнения гравитационного поля Гильберт вывел почти одновременно с Эйнштейном; исходя из идей Эйнштейна, он опередил его всего лишь на две недели. Поэтому главные уравнения общей теории относительности мы называем уравнениями Гильберта—Эйнштейна (хотя сам Гильберт всегда подчеркивал приоритет Эйнштейна в создании этой теории).

Уравнения Гильберта—Эйнштейна устанавливают количественную связь сил всемирного тяготения с кривизной пространства. Там, где есть поле тяготения, пространство всегда искривлено. И наоборот, пространственная кривизна проявляется в виде сил гравитации. Новые уравнения предсказывают и позволяют рассчитать огромное количество новых физических явлений, в том числе и самое грандиозное явление, которое мы можем сейчас себе представить — Биг Бэнг. И вместе с тем всего лишь несколько ее предсказаний могут быть проверены на опыте или с помощью астрономических наблюдений. Остальные же либо находятся за пределами точности наших приборов, либо относятся к космическим объектам, которые еще только предстоит открыть. Даже черные дыры еще по-настоящему не подтверждены наблюдениями. Поэтому главным козырем общей теории относительности в ее конкуренции с другими, более поздними теоретическими построениями, которые тоже согласуются со всеми наблюдаемыми фактами, могла бы быть лишь большая и логическая последовательность и внутренняя непротиворечивость. Но в этом смысле она небезупречна.

Теория эта завоевала признание не сразу — уж очень необычными были ее выводы. Но постепенно к ним привыкли, и теория прочно утвердилась в учебниках. Вместе с квантовой механикой она сегодня составляет основу наших представлений об окружающем мире. И как это иногда бывает, стрелка общественного мнения (а оно и в науке играет важную роль) качнулась в другую сторону: недоверие к теории сменилось преклонением перед ней. Ее стали рассматривать как некий идеал — образец для всех других физических теорий. «Ни один вопрос,— писал один известный физик,— не остаётся в ней без ответа, нигде нет трудностей или неясностей даже в малейших деталях; если бы вся теоретическая физика достигла такой завершенности, наступил бы «седьмой день творения» для ученых и, увидев, что созданное хорошо, они могли бы отдохнуть от принципиальных вопросов и навсегда посвятить себя приложениям!»

Это, конечно, преувеличение. Курт Гёдель еще полвека назад доказал теорему о том, что в любой теории, какой бы стройной и самосогласованной она ни была, обязательно есть внутренние противоречия и вопросы, на которые она не может ответить, и общая теория относительности — не исключение. Серьезные трудности обнаружились сразу же после ее создания. Первым на них натолкнулся молодой австрийский физик Эрвин Шрёдингер. Из его расчетов вытекало, что некоторые простые тела, например материальная точка или шар, создают вокруг себя поле тяготения, которое, однако, не имеет энергии — она равна нулю во всех пространственных точках. Сила тяготения есть, а энергии нет!

Еще более удивительный результат получил немецкий физик Бауэр. Он показал, что если в совершенно пустом пространстве прямоугольные декартовы координаты заменить полярными, то там сразу же появится гравитационное поле, да еще с бесконечно большой энергией. Другими словами, если в качестве системы отсчета выбрать прямоугольный угол комнаты, то тяготения не будет, а если за начало координат взять круглую люстру на потолке и характеризовать положение тел, отсчитывая от нее лучи-отрезки, то пространство немедленно оказывается заполненным гравитацией. Ничего не нужно делать, только мысленно (заметьте—мысленно!) поменять систему координат, и пожалуйста: была нулевая энергия, стала бесконечная!

Эти парадоксы были хорошо известны и самому Эйнштейну. Устранить их ему удалось лишь очень дорогой ценой. Пришлось допустить, что гравитационное поле не имеет энергии в отдельных пространственных точках. Сохраняющейся энергией обладает лишь все поле в целом, сразу во всем бесконечном пространстве. Но и этого было еще недостаточно. Пришлось запретить полярную систему координат и вообще все системы, которые не переходят на бесконечности в декартову. Но это уже плохо — чем полярная система координат хуже декартовой? Ведь результаты расчетов не должны зависеть от точки зрения наблюдателя и от способа, какими их выполняют. По мнению многих ученых, проще предположить, что формула гравитационной энергии, послужившая основой для парадоксальных выводов Шрёдингера и Бауэра, еще недостаточно точна. Быть может, исправить положение удастся в будущем?

Прошло, однако, более полувека, а все попытки найти непротиворечивое выражение для энергии тяготения — а их за это время было немало — потерпели неудачу. Неудача, правда, не обескуражила физиков. Они уже привыкли к тому, что на первых порах физическая теория часто бывает противоречивой. Так, если с помощью квантовой теории рассчитать массу или электрический заряд электрона, то в ответе получится бесконечность. Квантовая теория, оказывается, не умеет рассчитывать такие величины, и с этим пока приходится мириться. На этом фоне трудности с энергией в общей теории относительности Эйнштейна выглядели не слишком уж страшными, и многие физики считали, что их устранение можно отложить до лучших времен, тем более что гравитационное взаимодействие намного слабее других взаимодействий. Например, сила кулоновского отталкивания двух электронов в 1042 раз больше их гравитационного притяжения. Это означает, что если бы электромагнитные силы, притягивающие электрон к атомному ядру, вдруг ослабли до уровня гравитационных, то атом водорода вырос бы до размеров чуть ли не всей Вселенной.

Можно, можно подождать! Звездолеты, которым для навигации понадобилась бы общая теория относительности, летают пока лишь на страницах научно-фантастических романов; теория имеет, скорее, философское, нежели физическое значение.

Так думали долго. Но в последние десятилетия начали возникать и физические вопросы, на которые нельзя ответить без этой теории. Без нее нельзя рассматривать развитие Вселенной в первые минуты после Большого взрыва, когда устанавливался химический состав и распределение вещества и антивещества в нашем мире (не говоря уж о более ранних периодах «кристаллизации» правещества). Формулы, теории относительности нужны для описания свойств квазаров, для расчетов опытов с гравитационными волнами, для решения проблем «суперобъединения» гравитационного и других полей. Вопрос об энергии поля тяготения стал одним из основных.

Пожалуй, здесь мы встречаемся с единственным по-настоящему фундаментальным противоречием современной физики, устранение которого, возможно, потребует каких-то принципиально новых концепций. В физике много неясных моментов; некоторые ее разделы до сих пор представляют собой клубок плохо стыкующихся моделей, тем не менее принципиальных противоречий между экспериментом и теорией или между отдельными ее разделами там нет. Лежащие в основе современной физики релятивистские и квантовые законы охватывают чрезвычайно широкий круг явлений, за пределы которого физикам еще не удалось выйти. Даже такие экзотические объекты, как глюоны и кварки, и те подчиняются этим законам. Но вот как обойтись без энергии, чем ее заменить — этот вопрос выводит нас далеко за рамки известных физических идей. Единого мнения, в каком направлении следует искать разгадку «энергетического парадокса», у физиков нет. Часть из них, следуя Эйнштейну, считает, что гравитационное поле вообще не имеет энергии в отдельных точках. Эта концепция станет более понятной, если мы вспомним, что в соответствии с теоремой Неттер физические процессы в неоднородном несимметричном пространстве должны протекать так, словно само пространство воздействует на находящиеся в нем тела. В теории Эйнштейна, где пространство и время имеют сложную искривленную форму, этот эффект проявляется как гравитационная сила. Из формул, полученных им, следует, что везде, где есть кривизна пространства-времени, непременно возникает тяготение. А раз так, то можно предположить, что в отличие от электромагнитного и других полей, представляющих собой пространственное распределение материи, поле тяготения — это чисто геометрическое свойство нашего мира, и поэтому понятия массы и энергии, к нему не применимы.

Гравитационное взаимодействие тел, их тяготение осуществляется волнами кривизны пространства-времени. Идея непривычная. Волна, не имеющая сама энергии, замедляет или ускоряет движение тел, то есть в конечном счете изменяет их энергию. Это одна из тех «сумасшедших» идей, которые могут привести к революции в физике. Но вот как последовательно довести эту идею до логического завершения и обойти все возникающие на ее пути препятствия, пока неясно. По мнению многих ученых, энергия и масса — слишком фундаментальные величины, чтобы можно было от них отказаться, не изучив всех возможностей. Не будем забывать о бритве Оккама! Тем более что для слабых гравитационных полей можно построить теорию в плоском пространстве, где гравитация обладает свойствами обычного материального, энергетического поля — такого же, как электромагнитное, мезонное и все другие известные нам поля. Такую теорию в середине 30-х годов создал советский физик М. П. Бронштейн. В ней физические тела притягиваются, обмениваясь квантами гравитационного поля — гравитонами.

Мысль о том, что гравитация обладает энергией, подсказывает современная теория суперобъединения, где гравитационное поле — всего лишь особое проявление единого поля. Поскольку другие его проявления имеют энергию, то кажется естественным, что она должна быть и у тяготения.

В общем, сомнений и трудностей, которые порождает отказ от энергии в общей теории относительности, много. Чтобы понять, как можно было бы их обойти, рассмотрим подробнее исходную идею Эйнштейна о чисто геометрической (пространственно-временной) природе сил тяготения. Великий физик пришел к ней, размышляя над особенностями свободного падения тел. Такие тела, например, человек в стремительно спускающейся кабине лифта, приобретают невесомость. При этом тяготение исчезает для всех тел одинаково, независимо от их массы и внутренних свойств. Получается, что гравитационное поле можно полностью уничтожить, сделать равным нулю простым преобразованием системы координат — путем перехода от неподвижной системы, связанной с. Землей, к движущейся системе типа лифта. А так как материальную субстанцию преобразованием координат устранить нельзя — она будет существовать независимо от того, с какой платформы, движущейся или неподвижной, мы ее наблюдаем,— из этого, казалось бы, неизбежно следует вывод о совершенно особой, «невещественной» природе поля тяготения.

Теперь остается только шаг, чтобы окончательно связать гравитацию с геометрией, ведь четырехмерное пространство-время — единственная известная нам «нематериальная сущность» природы, и если гравитация не материя, то, значит, она действительно чисто геометрического происхождения.

Конечно, можно лишь гадать, как рассуждал сам Эйнштейн, но, если судить по его статьям и книгам, мы, надо надеяться, не слишком отклонились от истины.

Насколько же убедительными и непоколебимыми являются все эти рассуждения с современной точки зрения? Нет ли другой возможности для объяснения происходящих вокруг мае гравитационных явлений?

Прежде всего заметим, что исходное положение о полном уничтожении тяготения подходящим выбором системы координат неточно. Это можно сделать лишь теоретически, если допустить, что сила тяготения совершенно одинакова во всех точках Вселенной. Иначе полной компенсации тяготения не получается: уничтожив его в одном месте, мы сохраним и даже усилим его в других. Например, скорость пикирования самолета, достаточная для создания невесомости на Земле, слабо скажется па весе его пассажиров в условиях массивной планеты Юпитер. Более того, теперь нам известно, что некоторые виды вещества «чувствуют» гравитацию в любой системе координат, независимо от ее скорости. Такими свойствами обладают, в частности, массивные быстро вращающиеся резонансы с большим спином. Действующие на них гравитационные силы зависят от их вращения, и полностью невесомыми эти частицы никогда не бывают.

Ну а если полная компенсация гравитационного поля невозможна, то и вывод о его геометрической природе теряет убедительность 1. Это не твердое следствие эксперимента, а всего лишь гипотеза. Она может быть верной, а может и ошибочной. В принципе теорию допустимо строить на основе и других гипотез.

Советские физики, академик А. А. Логунов и его сотрудники, считают гипотезу Эйнштейна о чисто геометрической природе тяготения неверной. По их мнению, сегодня нет достаточных оснований отказываться от энергии. Они убеждены, что гравитация — такое же вещественное поле как электромагнитные волны или нейтрино. Его особенность лишь в том, что все без исключения известные нам виды материи имеют гравитационный заряд (массу) одного и того же знака, и поэтому и гравитационные взаимодействия одинаковы. Тяготение играет роль некоего всеобщего фона, на котором происходят все физические процессы.

Исходя из этих соображений, можно построить новую теорию гравитации, у которой будет замечательное свойство. Оказывается, если из ее уравнений исключить поле тяготения, в них останется его «отпечаток» — уравнения будут выглядеть так, будто искривилось, стало изогнутым первоначально плоское пространство. Другими словами, в новой теории есть две равноценные возможности: либо вещественное гравитационное поле в плоском пространстве, либо искривленное пространство-время, но уже без поля.

Но как же возможна замена гравитационного поля пространственной кривизной? Вспомним одно схожее, но более простое и наглядное явление. В строгой теории элементарных частиц невзаимодействующие, изолированные протоны — точечные объекты. Однако, изолировать, полностью заэкранировать от всех других частиц их можно лишь теоретически: на самом деле протоны всегда взаимодействуют с мезонным полем. Вся их «жизнь», все процессы, в которых они принимают участие, протекают на фоне порождаемого ими поля мезонов, и этот фон, облако окружающих их мезонов, проявляется как пространственная «размазка» их заряда и массы. Тут тоже есть две возможности: можно иметь дело с точечными протонами и связывающим их мезонным полем или же забыть об этом поле и рассматривать столкновение протонов-шариков. В «жизни» протонов мезонное поле играет роль посредника.

Вот такую же роль посредника в теории Логунова выполняет и гравитационное поле. Оно не размазывает ни массы, ни заряда тел, но зато искривляет, делает неоднородным пространство и время в их окрестности.

В новой гравитационной теории нет трудностей с энергией. От одного тела к другому взаимодействие передается с помощью вполне материальных, обладающих энергией и импульсом гравитационных волн. А в предельном случае, когда тяготение становится достаточно слабым, общая теория смыкается с упоминавшейся выше теорией гравитонов Бронштейна.

Итак, мы видим, что «простой» вопрос, сохраняется ли энергия, оказывается очень непростым. Многое здесь неясно. Проблема гравитационной энергии — настоящая загадка. Безусловно, будет еще немало споров и острых дискуссий вокруг различных подходов к ее решению. Теория, разработанная Логуновым и его сотрудниками, — только одна из возможностей в этом направлении. Да и теория Эйнштейна, несмотря на противоречия, содержит много привлекательного и не собирается сдавать свои позиции.

***

Мы коснулись основных и, пожалуй, самых трудных проблем современной физической науки — там, где она углубляется в недра микромира и там, где выходит на просторы большого космоса. И оказалось, что все эти проблемы взаимосвязаны. Нельзя познать космос, не изучив законов микромира, и наоборот, новые идеи элементарных частиц проходят проверку в космологии.

Физика развивается стремительно. Строятся все более крупные и точные приборы. Современные исследовательские лаборатории стали похожи на большие промышленные предприятия. Огромные массивы получаемой в опытах информации обрабатываются на самых мощных и быстродействующих компьютерах. Более того, с помощью компьютера выполняются не только численные расчеты, но и сложнейшие алгебраические выкладки, которые не под силу даже большим коллективам ученых. А результатом всех этих исследований становятся не только новые технологические процессы, быстро изменяющие наш образ жизни, но и широкие мировоззренческие картины, которые ведут мысль человека к новым горизонтам научного знания. Этот процесс бесконечен и прекрасен. Как еще двадцать с лишним веков назад говорил греческий ученый Анаксагор, призвание человека — в обладании Знанием и проистекающей отсюда Свободой.