Музыка теории струн

Хотя теория струн покончила с предшествующей концепцией элементарных частиц, лишённых внутренней структуры, расставание со старым языком происходит тяжело, особенно когда он даёт точное описание действительности вплоть до наименьших доступных масштабов расстояний. Поэтому, следуя сложившимся традициям, мы будем продолжать говорить об «элементарных частицах», но при этом всегда будем помнить, что в действительности это «то, что выглядит элементарной частицей, но на самом деле представляет собой крошечную колеблющуюся струну». В предшествующем разделе мы предположили, что массы и константы взаимодействия таких элементарных частиц связаны с модами колебаний соответствующих струн. Это приводит нас к следующему выводу: если бы мы смогли точно определить все допустимые резонансные моды колебаний фундаментальных струн, — так сказать, «ноты», которые они могут исполнять, мы смогли бы объяснить наблюдаемые свойства элементарных частиц. Таким образом, теория струн впервые предлагает систему, позволяющую объяснить свойства существующих в природе элементарных частиц.

На данной стадии нужно «взять» струну и «притронуться» к ней всеми возможными способами, чтобы определить возможные моды резонансных колебаний. Если теория струн права, возможные резонансные моды точно воспроизведут наблюдаемые свойства перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, передающих взаимодействия. Конечно, струны слишком малы, чтобы можно было осуществить такой эксперимент в буквальном смысле слова. Вместо этого мы будем «притрагиваться» к струнам теоретически, используя математические модели. В середине 1980-х гг. многие приверженцы теории струн верили, что соответствующие математические методы способны объяснить все тончайшие детали строения мироздания на самом микроскопическом уровне. Некоторые энтузиасты провозгласили, что, наконец-то, найдена теория всего. Оглядываясь на прошедшее десятилетие, мы видим, что эйфория, порождённая этой верой, была преждевременна. Теория струн имеет задатки стать «теорией всего», но на её пути остаётся ещё ряд препятствий, не позволяющих определить спектр колебаний струн с точностью, достаточной для сравнения с экспериментальными данными. Поэтому в настоящее время мы не знаем, может ли теория струн объяснить фундаментальные характеристики мироздания, приведённые в табл. 1.1 и 1.2. Как будет показано в главе 9, при определённых обстоятельствах, которые будут чётко сформулированы, теория струн приводит к Вселенной, свойства которой находятся в качественном согласии с данными для известных частиц и взаимодействий. Но предоставить детальные количественные характеристики эта теория сегодня ещё не в состоянии. Таким образом, хотя в отличие от стандартной модели с её точечными частицами теория струн способна дать объяснение, почему частицы и взаимодействия имеют те свойства, которые они имеют, мы пока не способны их «выудить». Однако удивительно то, насколько богата теория струн и сколь далеко она простирается. Хотя мы пока не можем детально определить её свойства, она позволяет проникнуть в суть целого ряда новых вытекающих из неё физических явлений. Мы увидим это ниже.

В следующих главах мы более подробно обсудим имеющиеся проблемы, однако полезно сначала ознакомиться с ними в самых общих чертах. Окружающие нас струны могут иметь самое разное натяжение. Например, шнурки на ботинках обычно натянуты намного слабее, чем струны на скрипке. И те и другие, в свою очередь, имеют гораздо меньшее натяжение, чем струны рояля. Единственным параметром, который требуется для калибровки теории струн, является их натяжение. Как определить это натяжение? Если бы мы могли коснуться фундаментальной струны, мы узнали бы её жёсткость и могли бы определить её натяжение тем же способом, который используется для других, более привычных струн. Но поскольку фундаментальные струны так малы, мы не можем использовать этот подход, и возникает необходимость в разработке косвенного метода. В 1974 г., когда Шерк и Шварц предположили, что одна из мод колебания струн представляет собой гравитон, они смогли использовать такой косвенный метод и определить натяжение, с которыми оперирует теория струн. Их расчёты показали, что интенсивность взаимодействия, передаваемого колебанием струны, соответствующем гравитону, обратно пропорциональна натяжению струны. А поскольку гравитон передаёт гравитационное взаимодействие, которое является очень слабым, полученное ими значение натяжения оказалось колоссальным: тысяча миллиардов миллиардов миллиардов миллиардов (1039) тонн, так называемое планковское натяжение. Таким образом, фундаментальные струны являются чрезвычайно жёсткими по сравнению с обычными. Этот результат имеет три важных следствия.