Теория возмущений

Ограничения методов, с помощью которых физики пытались анализировать теорию струн, связаны с использованием теории возмущений. Теория возмущений — меткое название приближённой процедуры, в которой сначала пытаются найти грубый ответ, а затем поэтапно уточняют его с учётом всё большего числа подробностей, опущенных на предыдущих этапах. Теория возмущений играет важную роль во многих областях науки; она являлась существенным элементом в понимания теории струн, и, как мы сейчас покажем, прочно входит в круг житейских явлений.

Предположим, что в один прекрасный день машина вашего знакомого начинает барахлить, и он обращается в мастерскую, чтобы её проверить. Осмотрев машину, механик говорит, что дело плохо. Нужен новый блок двигателя, и обычно ремонт в таких случаях обходится примерно в $900 (включая стоимость деталей). Это примерная оценка, а более точная стоимость выяснится в ходе ремонта. Проходит несколько дней, и, проведя дополнительные проверки, механик сообщает более точную стоимость $950. Он объясняет, что необходим ещё и новый регулятор: это увеличит общую стоимость ремонта примерно на $50. Наконец, когда машина отремонтирована, вашему знакомому выставляется счёт на $987,93. В мастерской объясняют, что в него входят $950 за блок двигателя и регулятор, $27 за ремень вентилятора, $10 за кабель аккумулятора и $0,93 за изолированный болт. Примерная первоначальная стоимость $900 уточнялась с учётом всё более мелких деталей. На языке физики эти детали рассматриваются как возмущения исходной оценки.

При правильном использовании теории возмущений первоначальная оценка будет достаточно близка к окончательному ответу, и после учёта мелких подробностей, опущенных в исходной оценке, поправка будет невелика. Но иногда при оплате счёта выясняется, что конечная сумма ужасающе расходится с начальной оценкой. И хотя в этот момент в голову, возможно, приходят совсем другие слова, в математике это называется неприменимостью теории возмущений. Это означает, что исходное приближение было плохим прогнозом окончательного ответа, потому что поправки привели не к относительно малым отклонениям, а к сильным изменениям приближённой оценки. Как указывалось в предыдущих главах, наше обсуждение теории струн до этого места опиралось на теорию возмущений, в определённом смысле аналогичную той, которую использовал механик. Упоминавшееся время от времени «недостаточное понимание» теории струн так или иначе связано с применением этого приближённого метода. Чтобы лучше понять смысл последнего утверждения, рассмотрим теорию возмущений в контексте, менее абстрактном, чем в теории струн, но всё же более близком к этой теории, чем пример с механиком.

Классический пример теории возмущений

Классический пример использования теории возмущений даёт изучение движения Земли в Солнечной системе. На таких больших пространственных масштабах можно учитывать только гравитационное взаимодействие, однако, если не делать дополнительных приближений, возникающие уравнения будут крайне сложны. Вспомним, что и по Ньютону, и по Эйнштейну все тела оказывают гравитационное воздействие на все другие тела, так что попытка точной формулировки сразу приводит к математически неразрешимой задаче о «гравитационном перетягивании каната» Землёй, Солнцем, другими планетами и, если по-честному, всеми другими небесными телами. Как нетрудно сообразить, определить точное движение Земли с учётом всех влияний невозможно. На самом деле, уже в случае трёх небесных тел уравнения становятся настолько сложными, что никто не сумел полностью решить их.{79}

Тем не менее в рамках теории возмущений можно предсказать движение Земли в Солнечной системе с высочайшей точностью. Огромная масса Солнца по сравнению с массами всех других тел Солнечной системы, как и близость Солнца к Земле по сравнению с расстояниями от Земли до других звёзд, свидетельствуют о том, что Солнце оказывает доминирующее воздействие на движение Земли. Таким образом, в первом приближении можно учитывать только гравитационное воздействие Солнца. Для многих приложений этого вполне достаточно. Если окажется необходимым, можно уточнить это приближение, последовательно учитывая гравитационное воздействие следующих по степени влияния тел, например, Луны или тех планет, которые в данный момент проходят ближе всего к Земле. По мере того как паутина гравитационных взаимодействий будет становиться более запутанной, вычисления могут стать сложными, но это не должно затемнять смысл философии теории возмущений: гравитационное взаимодействие между Землёй и Солнцем даёт нам приближённое понимание движения Земли, а совокупность остальных гравитационных взаимодействий последовательно учитывается всё уменьшающимися поправками.

В этом примере подход в рамках теории возмущений применим, так как существует доминирующее физическое воздействие, допускающее сравнительно простое теоретическое описание. Это не всегда так. Например, если нужно рассчитать движение трёх сравнимых по массе звёзд, вращающихся в тройной системе одна вокруг другой, нельзя указать, взаимодействие каких звёзд будет доминирующим. Поэтому нельзя дать грубую оценку, к которой затем можно было бы делать малые поправки, обусловленные другими эффектами. Если попытаться использовать теорию возмущений и выбрать для грубой оценки, например, взаимодействие между двумя звёздами, быстро выяснится, что подход неприменим. Вычисленные «поправки» за счёт влияния третьей звезды будут не малыми, а столь же существенными, что и первое грубое приближение. Ситуация знакомая: движения трёх человек, танцующих танец «хора» мало напоминают движения пары, танцующей танго. Большие поправки означают, что исходное приближение было выстрелом мимо цели, а вся схема была карточным домиком. Важно понимать, что дело не просто в учёте большой поправки третьей звезды. Здесь действует эффект домино: большая поправка сильно влияет на движение двух звёзд, что, в свою очередь, сильно влияет на движение третьей звезды, которое опять-таки влияет на движение двух звёзд, и т. д. Все нити гравитационной паутины одинаково важны, и должны рассматриваться одновременно. Единственным спасением в таких случаях часто бывает метод грубой силы — компьютерное моделирование совместного движения.

Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение действительно приближением, и, если оно им является, сколько и каких более точных деталей следует учитывать, для достижения требуемой точности. Как мы сейчас обсудим, эти вопросы особенно важны при применении теории возмущений к изучению физических процессов в микромире.