Два взаимосвязанных понятия расстояния в теории струн

В нашем понимании мира расстояние является настолько фундаментальным понятием, что очень легко недооценить всю его глубину и тонкость. Вспоминая поразительные изменения, которые претерпели понятия о времени и пространстве после открытия специальной и общей теории относительности, в свете новых результатов теории струн мы должны быть несколько более точными даже при определении расстояния. Наиболее осмысленными определениями в физике являются те, которые конструктивны, т. е. дают (по крайней мере, в принципе) способ для измерения того, что определяется. В конце концов, не важно, насколько абстрактным является понятие, — если в нашем распоряжении есть конструктивное определение, всегда можно свести смысл этого понятия к экспериментальной процедуре его измерения.

Как же дать конструктивное определение понятия расстояния? В рамках теории струн ответ на этот вопрос довольно неожиданный. В 1988 г. физики Роберт Бранденбергер и Кумрун Вафа из Гарвардского университета показали, что если пространственная форма измерения является циклической, в теории струн есть два различных, но связанных друг с другом конструктивных определения расстояния. Для каждого определения своя экспериментальная процедура измерения расстояния, и каждое определение, грубо говоря, основано на простом принципе измерения времени, за которое движущийся с постоянной фиксированной скоростью зонд проходит данный отрезок. Различие двух процедур состоит в выборе этого зонда. В первом случае используются струны, не намотанные вокруг циклического измерения, а во втором — струны, которые намотаны вокруг него. Свойство протяжённости фундаментального зонда объясняет существование двух естественных конструктивных определений расстояния в теории струн. В теории точечных частиц, где намотка не имеет места, возможно лишь одно такое определение.

Чем отличаются результаты двух процедур? Ответ, который дали Бранденбергер и Вафа, столь же поразителен, сколь и нетривиален. Основную идею можно проиллюстрировать с помощью соотношения неопределённостей. Ненамотанные струны могут свободно двигаться в пространстве, и с их помощью можно измерить полную длину окружности, пропорциональную R. Согласно соотношению неопределённостей их энергии пропорциональны 1/R (вспомним отмеченную в главе 6 обратную пропорциональность энергии зонда расстояниям, которые он способен измерять). С другой стороны, мы видели, что минимальная энергия намотанных струн пропорциональна R. Поэтому, согласно соотношению неопределённостей, если такие струны используются в качестве зондов, то эти зонды чувствительны к расстояниям порядка 1/R. Из математической реализации этой идеи следует, что если для измерения радиуса циклического измерения пространства используются оба зонда, с помощью ненамотанных струн будет измерено значение R, а с помощью намотанных — значение 1/R, где, как и выше, все результаты измерений расстояний выражены в единицах планковской длины. Есть равные основания считать результат каждого из измерений радиусом окружности: теория струн демонстрирует, что для разных зондов, которые используются для измерения расстояния, мы можем получить разные ответы. На самом деле это справедливо для всех измерений длин и расстояний, а не только для определения размера циклического измерения. Результаты, полученные с помощью ненамотанных и намотанных струнных зондов, будут обратно пропорциональны друг другу.{70}

Так почему же, если теория струн действительно описывает нашу Вселенную, мы до сих пор не сталкивались с различными понятиями расстояния в повседневной жизни или научных исследованиях? Всякий раз, говоря о расстояниях, мы опираемся на опыт, в котором есть место лишь для одного понятия расстояния и ни намёка на другое понятие. Где мы упустили альтернативную возможность? Ответ в том, что при всей симметрии нашего подхода, для значений R (а, следовательно, и значений 1/R), сильно отличающихся от единицы (что опять означает единицу, умноженную на планковскую длину), одно из конструктивных определений крайне сложно реализовать экспериментально, в то время как второе реализуется весьма просто. По существу, мы всегда выбираем самый простой подход, не подозревая, что существует другая возможность.

Значительное различие в сложности реализации двух подходов обусловлено значительным различием масс используемых зондов, т. е. различием между высокоэнергетической топологической и низкоэнергетической колебательной модой (и наоборот), если радиус R (и 1/R) сильно отличается от планковской длины (когда R = 1). При таких радиусах «высоким» энергиям соответствуют чрезвычайно большие массы зондов (в миллиарды миллиардов раз больше массы протона), а «низким» энергиям соответствуют исчезающе малые массы. Различие двух подходов при этом непреодолимо велико, так как даже создать столь тяжёлые струнные конфигурации в настоящее время технически невозможно. На практике можно реализовать лишь один из двух подходов, а именно тот, в котором используется более лёгкая струнная конфигурация. До сего момента именно на него неявно опирались все предыдущие рассуждения, связанные с понятием расстояния; именно он питает нашу интуицию, и, следовательно, хорошо с ней согласуется.

Игнорируя практическую сторону вопроса, можно сказать, что в описываемой теорией струн Вселенной каждый вправе выбирать любой из двух подходов. Когда астрономы измеряют «размер Вселенной», они регистрируют фотоны, которые, путешествуя по Вселенной, волей случая попадают в их телескопы. Эти фотоны являются лёгкими струнными модами, и результат равен 1061 планковских длин. Если три известные нам пространственные измерения действительно циклические, а теория струн верна, то астрономы, использующие совершенно другое (в данный момент не существующее) оборудование, в принципе могли бы обмерять небеса тяжёлыми модами намотанных струн. Они получили бы ответ, обратный этому огромному расстоянию. Именно в таком смысле можно считать, что Вселенная либо громадна (как мы обычно и считаем), либо крайне мала. Согласно информации, которую дают лёгкие моды струны, Вселенная громадна и расширяется, а согласно информации тяжёлых мод — крайне мала и сжимается. В этом нет противоречия: просто используются два различных, но одинаково осмысленных определения расстояния. Из-за технических ограничений для нас гораздо привычнее первое определение, но и второе определение столь же законно.

Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся лёгкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе лёгких и на основе тяжёлых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.