Не только струны?

Струны имеют две важных особенности. Во-первых, несмотря на конечность пространственных размеров, они могут быть непротиворечиво описаны в рамках квантовой механики. Во-вторых, среди резонансных мод колебаний имеется мода, свойства которой в точности совпадают со свойствами гравитона: тем самым гарантируется, что гравитационное взаимодействие представляет собой неотъемлемую часть этой теории. Однако, как мы помним, теория струн показала, что принятое понятие нульмерной точечной частицы оказалось не более чем математической идеализацией, не имеющей отношения к действительности. Не может ли быть так, что бесконечно тонкая одномерная струна представляет собой такую же математическую идеализацию? Может быть, одномерная струна на самом деле имеет какую-то толщину, подобно внутренней поверхности двумерной велосипедной шины или, если быть более реалистичными, подобно тонкой трёхмерной баранке? Но трудности, с которыми столкнулись Гейзенберг, Дирак и другие в попытках построить квантовую теорию трёхмерных фундаментальных комочков, выглядели непреодолимыми и вновь и вновь ставили в тупик исследователей, старавшихся пойти столь естественным путём.

Однако в середине 1990-х гг. специалисты по теории струн, используя косвенные и довольно сложные рассуждения, несколько неожиданно установили, что подобные фундаментальные объекты действительно играют важную и нетривиальную роль в самой теории струн. Исследователи постепенно осознали, что теория струн содержит не только струны. Важнейшее наблюдение, играющее центральную роль во второй революции в теории суперструн, начатой Виттеном и его коллегами в 1995 г., состоит в том, что теория суперструн в действительности включает в себя компоненты различной размерности: элементы, похожие на двумерные фрисби-диски, на трёхмерные капли, и даже ещё более экзотические конструкции. Эти новейшие достижения будут рассмотрены в главах 12 и 13. А пока будем следовать хронологии открытий и обсудим новые поразительные свойства Вселенной, состоящей не из нульмерных точечных частиц, а из одномерных струн.