Глава 43. Ядерная физика
«Цель научного и инженерного поиска — увеличить и улучшить наши знания об окружающем мире. Постоянное стремление добыть эти знания вызвано либо простым желанием постичь законы природы, либо желанием использовать силы природы для улучшения материальных условий жизни человека. Оба эти стремления можно грубо охарактеризовать как жажду познавать и стремление использовать. В ученом преобладает первое, в инженере — второе. Это различие в мотивах продолжает существовать, хотя методы и специфические задачи науки и инженерного дела становятся все более схожими».
«Хотя все наши научные и технические знания основаны на наблюдении, эксперименте и логическом анализе, накапливались они двумя различными путями в соответствии с двумя различными стремлениями, о которых я упомянул выше. Технические науки всегда были более эмпиричны. Инженера или изобретателя прежде всего интересует практическая сторона дела. Если он способен создать машину или придумать процесс, которые дадут ему желаемый результат, то его может и не интересовать, почему все так происходит. Но как раз это «почему» и волнует ученого. Часто для того, чтобы как-то продвинуться в понимании, ученому необходимо упростить условия решаемой им задачи. Ему приходится сократить число переменных. Но, делая это, он часто оказывается изучающим нечто, что не имеет непосредственного отношения к практической стороне жизни. Исторически наука развивалась, обходя проблемы, слишком трудные для понимания. Прогресс же в технических науках происходил на основе успехов в использовании определенных процессов или машин, причем независимо от того, все ли при этом вполне понятно. Для инженера на первом месте польза от машины или процесса, для ученого — понимание…»
«За последние пятьдесят лет изменились связи как между отдельными науками, так и между наукой и техникой. Благодаря возросшему объему научных знаний и эффективности научных методов стало возможным плодотворное применение методов и знаний одной науки в другой… За это же время технические науки стали настолько сложными, что одними только эмпирическими методами в них уже не обойтись. Короче говоря, стало не только возможным, но и необходимым использовать науку в инженерном деле. Различие в стремлениях пока еще остается и часто оказывается решающим, но методы и задачи становятся все более и более похожими».
Генри Д. Смит
«Атомная энергия»? «Превращения»?
Открытие радиоактивности вызвало много волнующих вопросов, α-, β-, γ-лучи уносят громадную энергию из атома. Нельзя ли воспользоваться этими богатыми запасами энергии, запрятанными в радиоактивных атомах?
Исходный радиоактивный элемент превращается в совершенно другой дочерний элемент. Нельзя ли извлекать из этих превращений пользу, скажем, превращая свинец в золото? Для того чтобы добиться этого, необходимо уметь управлять такими радиоактивными превращениями: ускорять уже известные или заставлять происходить новые. Вначале экспериментаторы пытались воздействовать на радиоактивные превращения разными способами. Однако скоро они убедились, что радиоактивная неустойчивость ряда элементов неизменна и не поддается воздействию, и наоборот: стабильность нерадиоактивных элементов в той же степени неуязвима. Эксперименты продолжались, и теперь уже известно, как добиться успеха: использовать бомбардирующие частицы высоких энергий. Если посмотреть, какие энергии для этого необходимы, то станет ясно, почему первые попытки потерпели неудачу.
Энергии радиоактивных превращений
α-, β- и γ-лучи — основные компоненты радиоактивного распада — возникают с энергиями в несколько Мэв. Быстрая α-частица в воздухе на пути 50 мм создает 200 000 пар ионов. Из расчета примерно 30 эв на одну пару ионов получается 6 000 000 эв.[153] Эти лучи не могут выходить из внешних областей распадающегося атома, из далеких от ядра частей электронного облака: для образования альфа-частицы там недостаточно массы. Электрическое поле не способно испускать β-лучи; оно к тому же слишком слабо, чтобы родить какой бы то ни было луч с энергией в несколько миллионов электронвольт. Лучи могут выходить только из ядра, и чтобы повлиять на их образование, нужны сравнимые по величине энергии, скажем в несколько миллионов электронвольт.
Это рушит любые надежды на создание радиоактивности простым разогревом: кинетическая энергия молекул газа при комнатных температурах примерно равна 1/30 эв, а при температуре раскаленной добела печи — всего лишь около 1/3 эв. Вот если бы создать печь с температурой внутренних частей звезды, тогда другое дело.
Энергии химических превращений
Энергии химических превращений также невелики: в этих превращениях молекула теряет или приобретает несколько электронвольт. Например, при сгорании угля выделяется тепло!
С [1 атом углерода] + О2 [1 молекула кислорода] —> [ПРОДУКТЫ] СО2 [1 молекула углекислого газа] + Тепло[4 эв тепла].
При сгорании других видов топлива получается примерно то же самое. Даже при взрыве — всего лишь очень быстром сгорании в ограниченном объеме, при котором мгновенное выделение тепла создает волну сжатия в воздухе, — выделяемая энергия в расчете на одну молекулу еще очень мала. При взрыве смеси бензина с кислородом выделяется от 40 до 50 эв на одну молекулу[154]. На каждую сгоревшую молекулу тринитротолуола приходится 30 эв. Громкий хлопок при взрыве кислорода с водородом происходит при выделении всего лишь 2 эв в расчете на одну молекулу образовавшейся воды[155]. Эти утверждения следуют из измерений поглощенного или выделенного тепла в химических реакциях, но они согласуются с результатами измерений путем бомбардировки атомов электронами. Можно обстреливать нейтральные атомы и молекулы медленными электронами. Электроны с энергией в несколько электронвольт рассеиваются на атомах упруго, но если мы будем стрелять электронами с большей энергией, в несколько десятков электронвольт, они выбьют у «жертвы» электрон и сделают из нее положительный ион. Для атомов натрия или калия, которые расстаются со своими электронами легко, на это требуется всего 4 или 5 эв, для атома водорода — 13,6 эв, для молекулы водорода — 15 эв, для атома гелия — 25 эв, и около 80 эв необходимо для того, чтобы одним залпом выбить оба электрона из атома гелия и сделать из него α-частицу. Считается, что химические реакции состоят в захвате и обмене внешними электронами, и поэтому приятно получить еще одно подтверждение этого: в процессах с участием в них электронов поглощается или выделяется энергия ст нескольких электронвольт до нескольких десятков электронвольт. Внутрь электронного облака более тяжелых атомов, имеющих много электронов, можно заглянуть поглубже, если стрелять более быстрыми электронами и возбуждать рентгеновские лучи или стрелять рентгеновскими лучами и срывать внутренние электроны.
Но даже в этом случае мы имеем дело с энергиями только в десятки тысяч электронвольт или около этого (если, конечно, не переходить к самым тяжелым ядрам, когда необходимы энергии около 100 000 эв).
Химия и радиоактивность
Итак, мы уподобили α- и β-лучи ракетам, стартующим из ядра. Когда они вылетают из ядра, масса последнего меняется: альфа-частица уносит массу, равную 4 массам атома водорода. Бета-частица уносит ничтожную массу, которая снова восстанавливается, когда образовавшийся атом захватывает недостающий ему внешний электрон. Заряд ядра при этом также меняется. Альфа-частица уносит заряд +2е, уменьшая тем самым заряд ядра (атомный номер понижается) на 2 единицы. Бета-частица уносит заряд — е, увеличивая заряд ядра на +е. При этом атомный номер ядра увеличивается на 1.
Фиг. 121. Радиоактивные превращения.
Изменения атомного номера Z ведут к такому же изменению в числе внешних электронов нейтрального атома и тем самым к изменению его химических свойств, которые определяются внешними электронами. Число же и распределение этих электронов определяются зарядом ядра Ze, и мы бессильны превратить один химический элемент в другой, не имея возможности изменить заряд ядра. Мечта алхимиков о превращении свинца (Z = 82) в золото (Z = 79) осуществилась бы, если бы можно было отобрать у каждого ядра свинца по три +е заряда. При радиоактивном распаде элементов заряд их меняется. Нельзя ли вызвать или хотя бы повлиять на такие изменения? Первые эксперименты показали: нет, и теперь ясно, что надеяться на это было безнадежно, пока не стали доступны для бомбардировки снаряды с очень высокой энергией. Масса электронов очень мала: они, словно кометы, легко заворачиваются ядром. Альфа-частицы несут «++» заряд и поэтому отталкиваются ядром. Они вылетают из радиоактивного ядра с кинетической энергией в несколько миллионов электронвольт. Поэтому для их возвращения назад нужна такая же по величине энергия. (Бесполезно использовать для бомбардировки нейтральный атом: уже на ранней стадии сближения с ядром его электроны отрывались бы от него и ядро отталкивалось бы подобно α-частице.) Однако некие надежды возлагались на бомбардировку быстрыми альфа-частицами легких атомов с малым атомным номером, т. е. с малым зарядом ядра. Они-то и привели к первым успехам в искусственном превращении элементов.
Искусственный распад. Превращения, осуществленные человеком
Спустя четверть века после открытия радиоактивности Резерфорду удалось сокрушить ядра нескольких атомов, облучая их быстрыми альфа-частицами. Альфа-частицы, выпущенные из радиоактивного источника, пронизывали газообразный азот. В конце своего пробега альфа-частицы иногда выбивали вперед более легкие частицы. Выбитые частицы закручивались с помощью магнитного поля, и тем самым можно было убедиться, что это протоны[156] Н+. Несмотря на то что эти события были редкими, они были сфотографированы. Около четверти миллиона треков в камере Вильсона было снято на кинопленку и обнаружено семь таких событий (фиг. 122). На снимках была видна отскочившая легкая частица, несомненно протон, и короткий трек атома отдачи, но исходная α-частица на них уже видна не была. Измерения углов и длины треков показали, что при столкновении сохранялся лишь момент количества движения, но не кинетическая энергия.
Фиг. 122. Фотоснимки в камере Вильсона.
Превращения ядра при его бомбардировке. Фотоснимок Блэккетта, демонстрирующий открытие Резерфорда. Альфа-частица сталкивается с ядром азота и исчезает. В результате-возникает ядро отдачи кислорода и протон (ядро водорода) (P. M. S. ВIасkett, Ргос. Roy. Soc. Load.).
Запишем теперь это следующим образом:
альфа-частица (ядро Не) СТАЛКИВАЕТСЯ с ядром атома азота ИСПУСКАЕТСЯ протон (ядро Н) получается новое ядро???
(заряд = +2е) (заряд = + 7е) (заряд = +е) (заряд = 7е + 2e — 1e)
(масса = 4 маcсы протона) (масса = 14) (масса = 1) (масса = 14 + 4–1)
Таким образом, новое ядро должно иметь заряд +8е, характеризующий кислород, и массу 17, до некоторой степени необычную, но не такую уж неожиданную для кислорода. (С помощью масс-спектрографа было показано, что в обычном кислороде помимо атомов О16 всегда присутствуют более тяжелые атомы О17.)
Фиг. 123. Позитрон.
Открытие Андерсоном положительного электрона. Трек пронизывает слой свинца. В направлении, перпендикулярном фотографии, от читателя приложено сильное магнитное поле. (Копия с фотоснимка К. Д. Андерсона, хранящегося в музее науки в Лондоне.)
С тех пор как появилось сообщение Резерфорда, осуществлено много таких «ядерных» реакций, сначала путем бомбардировки существующими в природе снарядами (α-частицами), а затем более мощными снарядами — протонами, ускоренными на больших машинах, и, наконец, еще более эффективными снарядами — лишенными заряда нейтронами. Эти ядерные превращения составляют обширную область ядерной «химии».
Фиг. 124. Образование пар. Рождение вещества.
Отрицательные и положительные электроны рождаются γ-квантом, пришедшим снизу. В направлении, перпендикулярном фотоснимку, приложено сильное магнитное поле (W. A. Fowler, E. R. Gаеrttner, С. С. Lauгitsen).
Фиг. 125. Распад ядра, вызванный нейтроном.
Нейтрон, столкнувшись с ядром азота, поглощается им. Образующееся ядро испустило α-частицу и испытало отдачу. Первичный нейтрон, трек которого на фотоснимке не виден, пришел от источника в направлении, указанном стрелкой (N. Feather, Ргос. Roy. Soc. Lond.).
Ядерная «химия»
Для ядерных реакций используется теперь принятая в химии запись уравнений. Например, ядро атома радия обозначается его химическим символом Ra, а атомный номер, т. е. заряд ядра, равный +88 зарядам электрона, и масса атома, равная 226 (в шкале, в которой Н ~= 1, O = 16), записываются так: 88Ra226. Распад атома радия с испусканием альфа-частицы и превращением его в атом радона записывается следующим образом:
88Ra226 = 86Rn222 + 2Не4
Открытое Резерфордом превращение азота записывается следующим образом:
2Не4 + 7N14 = 8O17 + 1H1.
Первая «большая машина» была не очень большой: она ускоряла протоны только до энергии 150 000 эв. Но уже эти протоны могли проникать в атомы литиевой мишени и раскалывать ее ядра. Фотоснимки в камере Вильсона подтвердили предположение о том, что «протон, попадая в атом лития, рождает две альфа-частицы высокой энергии»:
1H1 + 3Li7 = 2He4 + 2He4.
Протоны налетают с энергией около 150 000 эв. Каждая родившаяся альфа-частица имеет энергию 8 500 000 эв, т. е. обе частицы — 17 Мэв. Следовательно, можно сказать, что
1H1 + 3Li7 + (0,15) Мэв = 2Не4 + 2Не4 + (17) Мэв,
где Мэв означает миллион электронвольт. Альфа-частицы рождаются с кинетической энергией, гораздо большей, чем приносит с собой протон. Когда они сталкиваются с молекулами воздуха, то теряют свою энергию на ионизацию атомов, а также время от времени на столкновения с ядрами. Эта энергия в основном переходит в тепло. Сравните получающиеся количества тепла — 17 000 000 эв от одного атома лития с 4 эв, приходящимися на один атом сгоревшего угля.
Фиг. 126. Схематическое изображение атомных ядер.
(Замечание. Остальная часть атома — его электронное облако — в выбранном по схеме масштабе простирается на десятки метров от рисунка.)
Изображение ядерных событий, представленных на последующих рисунках, заимствовано из книги «Classical and Modern Physics», by H. White, D. Van Nostrand Соmр., Princeton. 1940.
Фиг. 127. Первое искусственное расщепление ядра.
Фиг. 128. Излучение альфа-частицы.
Фиг. 129. β-излучение.
Фиг. 130. γ-излучение.
Фиг. 131. Деление атома лития при бомбардировке его протонами.
Ядерная энергия. Никакой надежды на практическое использование
В данном случае имеет место гигантское выделение «ядерной энергии». В отличие от огромной энергии, получаемой при естественной радиоактивности атомов, ядерной энергией можно управлять: ее можно получать при помощи бомбардировки протонами. Нельзя ли на ней построить электростанцию? Нет! Хотя энергии выделяется и много, при этом едва лишь окупится стоимость деления одного атома. Во-первых, необходим ускоритель, постройка и эксплуатация которого весьма дороги. Во-вторых, только один из десятков тысяч протонов способен расщепить атом лития, поэтому каждый «удачный» протон обходится гораздо дороже стоимости его кинетической энергии.
Фиг. 132. Фотоснимок в камере Вильсона.
«Деление» ядра атома лития на две α-частицы при бомбардировке ядрами водорода на ускорителе. Снимок приведен в случае бомбардировки ядрами тяжелого водорода (дейтронами Н2), а ядра лития были ядрами легкого лития Li6. Видно несколько пар α-частицы, разлетающихся к стенкам камеры. (В этой реакции α-частицы образуются с энергией 11 Мэв каждая.) Видны также более короткие треки α-частиц, образующихся наряду с нейтронами в других ядерных реакциях.
Итак, получение энергии слишком дорого и выход ее слишком мал, чтобы это было выгодно. Вот если бы энерговыделение было самоподдерживающимся, т. е. если бы каждый взрывающийся атом лития вызывал деления соседних атомов, подобно тому как это происходит при горении обычного топлива, когда одна частичка поджигает другую, вот тогда бы существовал удивительный источник тепла. Тогда частичка лития, «зажженная» протоном, давала бы начало целой цепи реакций деления[157], где выделялась бы энергия в количестве, которое даже не снилось ни одному поставщику топлива. Но один атом лития не может «зажечь» другой атом: при распаде не возникает протона, способного это сделать.
По тем же причинам нет никакой надежды на практическое использование многих других ядерных превращений, полученных с помощью более мощных ускорителей. Однако изучение этих ядерных превращений дало исключительно ценную информацию — начала проясняться внутренняя структура ядер.
Количественное изучение этих реакций показало, что масса вещества точно не сохраняется. Если составить суммы масс вещества: вначале сумму масс ядер мишени и бомбардирующей частицы, а затем сумму масс ядер образующихся частиц, то сумма масс ядер, вступающих в реакцию, не совпадает с таковой после реакции. Но если точно так же, как и веществу, энергии приписать массу, то баланс окажется правильным: полная сумма [масса вещества + масса энергии] одинакова до и после каждого ядерного превращения.
Масса и энергия. Е = mс2
С самого начала нашего столетия существовало мнение, что энергия обладает массой[158]. В гл. 26 изложена довольно правдоподобная история, на основании которой можно предположить, что любой энергии Е отвечает масса величиной Е/с2. В настоящее время в результате многочисленных экспериментальных проверок выяснено, что энергия в любой форме имеет массу Е/с2 и поэтому соотношение Е = mс2 является универсальным.
Реакция деления атомов лития послужила прекрасным подтверждением точки зрения, согласно которой энергия обладает массой. Массы частиц, участвующих в этом событии, были тщательно измерены с помощью масс-спектрографа. В стандартной шкале масс, в которой масса атома О16 равна 16,0000, частицы имели следующие массы:
Бомбардирующая частица: протон 1H1, M = 1,0076
мишень: ядро лития 3Li7, М = 7,0165
Полная масса до взаимодействия М = 8,0241
продукты взаимодействия:
альфа-частица 2Не4, М = 4,0028
альфа-частица 2Не4, М = 4,0028
Полная масса после взаимодействия М = 8,0056
Полная масса после события несколько меньше, чем до него, если сложить массы частиц точно так же, как складываются массы частичек обычного вещества. Если теперь учесть массы, соответствующие начальным и конечным значениям кинетических энергий, то можно сказать, что каждая такая масса равна кинетической ЭНЕРГИИ/с2. Затем следует выразить результаты в шкале масс, в которой массе О16 соответствует 16,0000 или атому водорода — масса 1,0081. Для того чтобы выразить результат в новых единицах измерения, вычислите энергию, которой соответствует точно такая же масса, как масса протона, и выразите ее сначала в джоулях, а затем в электронвольтах.
Вычисление переводного множителя. Масса протона равна 1,67∙10-27 кг[159], энергия, которой соответствует такая масса, равна
Е = Mс2 = (1,67∙10-27 кг)∙(3,00∙108 м/сек)2 = 1,50∙10-10 кг∙м2/сек2,
или (кг∙м/сек2)∙м,
или ньютон∙м, или дж.
Любая энергия, кинетическая, потенциальная и т. д., равная 1,50∙10-10 дж, обладает массой 1,67∙10-27 кг, т. е. массой протона.
Но обычно энергии ядерных превращений выражаются в эв или Мэв. Вспомним здесь, что энергия в 1 эв равна энергии, приобретаемой зарядом, равным заряду электрона, т. е. 1,60∙10-19 кулон, прошедшим разность потенциалов в 1 в.
Следовательно,
1 эв = (1,60∙10-19)∙(1 дж/кулон) = 1,60∙10-19 дж.
Таким образом, энергия, которая обладает массой, точно такой же, как масса протона, равна
1 67∙10-27 кг = 1,50∙10-10 дж / 1,60∙10-19 дж/эв
Расчет на основании этих точных данных дает для энергии с массой протона значение, равное 938 Мэв.
[Лучший метод. Метод, который использовался выше, хотя и наиболее прост для понимания, но не является наилучшим. (Заряд электрона использовался дважды, причем был скрыт тот факт, что он сокращается.) Более удачный метод следующий:
Энергия, соответствующая массе М кг, равна Мс2, или М∙(3,0∙108)2 дж.
1 эв равен
(заряд электрона, е кулон)∙(1 дж/кулон), или е дж.
Следовательно,
энергия, соответствующая массе М кг, равна
М∙(3,0∙108)2/e эв
или
(3,0∙108)2/(e/М) эв
Пусть М — масса протона, а е — заряд электрона, е/М — отношение заряд/масса для ионов водорода, равное, как это следует из измерений в опыте по электролизу воды, 95 700 000 кулон/кг[160]. Тогда энергия, соответствующая массе, равной массе протона, составляет
(3,0∙108)2/95 700 000 эв = 9,0∙1016/9,57∙107 эв = 0,94∙109 эв или 940 Мэв]
Атомные единицы массы и энергии. В настоящее время массы (относительные) выражаются в «атомных единицах массы», в которых масса О16 полагается равной 16,0000. В этой шкале единиц масса атома водорода равна 1,0081; масса протона, т. е. ядра водорода, равна 1,0081 — 1/1840, что составляет 1,0076. Точные измерения с помощью масс-спектрографа дают следующие значения масс в этой шкале единиц:
В этой шкале единиц энергия, соответствующая массе в 1 единицу, несколько меньше 938 Мэв, приходящихся на массу протона, и равна 938.(1,0000/1,0076), т. е. 931 Мэв.
Этот переводной множитель играет очень важную роль при расчете выделяемой атомной энергии.
ЭНЕРГИЯ 931 Мэв ОТВЕЧАЕТ 1 АТОМНОЙ ЕДИНИЦЕ МАССЫ
(в шкале единиц, в которой масса О16 равна 16,0000).
Проверка соотношения Е = mс2 для реакции деления лития.
Теперь, полагая, что 931 Мэв соответствует 1 а.е.м., можно записать массы, отвечающие кинетическим энергиям. Попробуем сделать это в случае бомбардировки лития:
РЕЗУЛЬТАТ:
1H1 + 3Li7 + (0,15) Мэв [к.э. протона] =? = 2Не4 + 2Не4 + (17) Мэв [к.э. α + α],
МАССЫ: 1,0076 + 7,0165 + (0,15/931) (мacca, соответствующая кинетической энергии, в тех же единицах);
=? = 4,0028 + 4,0028 + (17,0/931) (мacca, соответствующая кинетической энергии, в тех же единицах);
1,0076 + 7,0165 + 0,0002 =? = 4,0028 + 4,0028 + 0,0183;
ПОЛНЫЕ МАССЫ: 8,0243 =? = 8,0239.
Теперь полные массы гораздо ближе друг к другу по величине. Полная масса вещества изменилась с 8,0241 до 8,0056, т. е. уменьшилась на 0,0185. Масса, отвечающая кинетической энергии, изменилась с 0,0002 до 0,0183, т. е. на 0,0181. Это увеличение составляет 98 % от потери энергии. Различие в 2 % вполне укладывается в ту неопределенность, с которой производятся весьма сложные измерения кинетической энергии. Точному балансу должна была бы отвечать кинетическая энергия α-частиц, равная 0,0187: ее измеряемая энергия должна бы быть равной 17,4 вместо 17 Мэв. Обратите внимание на то, с какой точностью необходимо было измерить массы атомов для проведенной выше проверки соотношения Е = mс2. Первые успехи измерений на масс-спектрографе — доказательство существования изотопов с целочисленными массовыми числами и высокая точность химического анализа — далеко превзойдены. Теперь точные измерения на нем показывают, что массы атомов не являются целыми числами, кратными величине массы водорода, или какой-нибудь другой фундаментальной единице. Всегда существует небольшое отличие, имеющее глубокий смысл, если мы верим в соотношение Е = mс2, а мы верим в него. Проделано множество детальнейших проверок, подобных одной из первых — на литии, и все подтвердили его. Его подтверждают также странные события, в которых участвуют «позитроны» — электроны с положительным зарядом, рассмотренные в дальнейшем. Подкрепляемое теорией относительности и экспериментальными проверками, соотношение Е = mс2 используется для того, чтобы предсказать превращения энергии в других ядерных событиях. Можно даже предсказать огромное выделение энергии при распаде массивного ядра на два меньших — при делении и при объединении легких ядер в одно большое — при синтезе.
Структура ядра. Нейтрон
Прежде чем перейти к изучению свойств нейтрона, следует либо снова просмотреть задачи 20 и 21 к гл. 8, либо попытаться решить приводимую ниже более легкую задачу 1.
Задача 1. Потери кинетической энергии в упругом столкновении
Мобилизуйте свои знания и здравый смысл для ответа на следующие вопросы:
а) Шарик пинг-понга, летящий со скоростью 20 м/сек на север, ударяет по лбу стоящего слона. Пусть удар абсолютно упругий (нет потери кинетической энергии на тепло), а ступни слона лишены трения.
1) Куда полетит шарик после удара — на юг или на север?
2) Куда будет двигаться слон — на юг или на север?
б) Предположим, что шарик весит 2 г (0,002 кг), а слон — около 2000 кг.
Оцените грубо (с точностью, скажем, 1 %):
1) Изменение импульса шарика.
2) Изменение импульса слона (предполагая, что импульс сохраняется)»
3) Скорость слона после удара.
4) Кинетическая энергия слона после удара.
5) Кинетическая энергия шарика после удара.
в) Сохранит ли шарик большую часть своей кинетической энергии или же после удара разделит ее поровну со слоном?
г) Поменяйте теперь массы местами: считайте, что слон очень быстро скользит в северном направлении и ударяет неподвижно висящий шарик от пинг-понга.
1) По вашему мнению, сильно ли изменится движение слона после столкновения?
2) Какую скорость, вы считаете, приобретет шарик подле столкновения?
(Чтобы ответить на этот вопрос, не прибегая к алгебраическим вычислениям, представьте себе, что вы мчитесь на слоне в тумане. Вам представляется, что слон покоится, а шарик налетает на вас и на слона.
Как, по вашему мнению, движется шарик до столкновения? Каким будет казаться вам его движение после удара?
Теперь вспомните, что слон движется, и скажите, как будет выглядеть движение шарика после удара с точки зрения стоящего на земле наблюдателя?)
3) Останется ли кинетическая энергия слона после столкновения той же самой или она разделится поровну между слоном и шариком?
д) Предположим теперь, что массы слона и шарика одинаковы: абсолютно упругий шарик, движущийся в северном направлении, ударяет «в лоб» точно такой же шарик, но покоящийся.
1) Как, на ваш взгляд, будут двигаться шары после столкновения? (Если вы сомневаетесь в ответе, попытайтесь поставить хотя бы грубый эксперимент и экстраполируйте его результат на идеальный случай.)
2) Будет ли шар двигаться с первоначальной кинетической энергией, потеряет ли большую часть ее или же при ударе она разделится поровну между шарами?
е) Резюме. Каково должно быть отношение массы налетающего тела к массе покоящегося, чтобы при упругом столкновении первое тело замедлилось?
В 1930 г., когда строились первые большие ускорители, все теории строения атома ждали экспериментальной проверки. Модель атома, предложенная Резерфордом, была уже усовершенствована — внешние электроны уже не вращались по строго определенным планетарным орбитам, а слились в одно волновое облако, но тем не менее атом еще рисовался рыхлым, с крошечным положительным ядром. Поскольку из ядра могут вылетать электроны, протоны и альфа-частицы, думали, что каждое ядро состоит из протонов и электронов (причем альфа-частица рассматривалась как некоторое компактное образование). Но при таком описании ядро оказывалось неустойчивым. Подобное ядро, казалось, должно было скорее распасться, чем оставаться стабильным; электроны не должны были умещаться в ядре: они настолько легки, что длина их волны слишком велика для этого. Кроме того, существовали серьезные затруднения, связанные с необходимостью выполнения закона сохранения момента количества движения. Тогда-то и были открыты нейтроны. Они изменили все представления о строении ядра.
В ряде экспериментов по бомбардировке атомов получались странные результаты. Казалось бы, альфа-частицы должны (время от времени) выбивать протоны из ядра азота и некоторых других легких элементов. В этом смысле бериллий, очень легкий металл с Z = 4, должен был быть многообещающим для использования его в качестве мишени. Но при бомбардировке бериллия альфа-частицами возникали какие-то странные лучи, которые не создавали ни ионов, ни треков в камере Вильсона. Может быть, улучи? Но толстые листы свинца почти не задерживали эти лучи. Но, может быть, — это очень жесткие, глубокопроникающие γ-лучи? Тогда возникал серьезный вопрос: «Откуда взяться такой энергии?» В отличие от свинца блок из парафинового воска или бак с водой почти полностью поглощали эти загадочные лучи. Кроме того, лучи выбивали протоны из поглощающего их воска или воды. Если бы это были γ-лучи, то это находилось бы в серьезном противоречии с законом сохранения энергии и импульса. Тогда коллега Резерфорда Джеймс Чэдвик написал в журнал «Нейчур» короткое сообщение, ставшее вскоре широко известным. Он обратил внимание на то, что эти противоречия легко разрешаются, если предположить, что «новые» лучи — не γ-лучи, а нейтральные незаряженные частицы с массой, примерно равной массе протона. Такими частицами могут быть не нейтральные атомы (положительные ядра со всеми их электронами), а, если можно так выразиться, «нейтральные ядра». Такие нейтроны, не создававшие вокруг себя электрического поля, не могли бы создавать ионы и испытывать заметное электрическое отталкивание ядрами; они легко проходили бы через вещество, не теряя своей энергии и не оставляя трека в камере. Если бы нейтрон сталкивался с тяжелым ядром в редком «лобовом» соударении, то он упруго отскакивал бы от него без существенной потери энергии. Но если бы он сталкивался с легким ядром, скажем, лучше всего с протоном, то он выбивал бы это ядро, отдав ему значительную часть своей энергии. Нейтроны упруго отскакивают от свинца, но выбивают протоны.
Вскоре на основании измерений импульса нейтрона до и после столкновения была рассчитана его масса. Она оказалась равной 1,0089 в отличие от 1,0076 — массы протона. Нейтрон начали широко использовать в качестве бомбардирующей частицы, и скоро он стал играть важную роль в исследованиях атомов. Когда нейтроны попадают в мишень, то они не испытывают отталкивания со стороны ядер мишени, а проходят мимо них без отклонения, даже если и подходят совсем близко к этим ядрам. Время от времени один из них попадает в ядро мишени и исчезает там, оказываясь запертым в нем таинственными ядерными силами. При этом возникает новое ядро. Добавление нейтрона не меняет заряда ядра.
Поэтому новое ядро является изотопом старого, тяжелее его на единицу массы. Оно может оказаться ядром неизвестного изотопа, часто к тому же нестабильного. Тогда это открывает легкий путь получения новых радиоактивных атомов. В настоящее время, бомбардируя ядра нейтронами, можно получать изотопы практически любого элемента, какого только пожелаем. Вначале источником нейтронов служила смесь радия с бериллием. Затем нейтроны стали получать, выбивая их на циклотронах из разных ядер протонами. Такие нейтроны хорошо послужили.
В настоящее время в мощных ядерных реакторах получают много разных нейтронов: и быстрых, и со средними скоростями, и медленных. Облучение нейтронами теперь легко производится путем помещения образца внутрь реактора. Например, радиоактивный фосфор, Р32 был получен в реакторе облучением нейтронами обычного фосфора Р31.
Фиг. 133. Получение нейтронов.
Фиг. 134. Составные части ядра.
Состав ядра
Вернемся теперь снова к структуре ядра. Модель ядра с нейтронами, входящими в его состав, представлялась более удовлетворительной: протоны и нейтроны в каждом ядре и никаких электронов. Атомный номер Z дает число протонов, а остальная часть «массы ядра» («атомный вес» минус Z) — число нейтронов. Ядро гелия (α-частица), например, с зарядом +2е и массой 4 больше не представлялось неустойчивым образованием из четырех протонов и двух электронов, обеспечивающих правильное значение заряда ядра. Теперь оно представляется тесным комочком из двух протонов и двух нейтронов. Правда, для того чтобы понять, что их удерживает вместе, необходимо было допустить существование особых сил, однако такой союз казался вполне возможным, тем более что он обеспечивал сохранение спинового момента количества движения. Таким образом, теперь каждое ядро представляется состоящим из протонов, число которых определяет заряд ядра и часть его массы, и связанных с ними нейтронов, число которых обеспечивает остальную часть массы ядра. У легких элементов число нейтронов и протонов примерно одинаково, у тяжелых же избыток нейтронов может достигать 50 %. (См. примерна приведенной выше диаграмме.)
Такая картина строения ядра подтверждается экспериментами, выполненными на больших ускорителях с очень быстрыми протонами. Попадая в атом мишени, протон с большой частотой выбивает из него нейтрон и примерно столь же часто другой протон. (Пустите-ка бильярдный шар по столу, заставленному редко расположенными белыми и черными шарами, число которых одинаково. Такой шар может прокатиться без столкновений. Но если уж он сталкивается, то это происходит равновероятно с белыми и черными шарами.) Это, казалось бы, говорит о том, что нейтроны и протоны действительно являются непременными составными частями ядра. Как они устроены и как они взаимодействуют внутри ядра — на эти вопросы пока нельзя дать окончательный ответ. Другими словами, пока еще не найдена полностью удовлетворительная «модель» ядра, хотя несколько претендующих на то моделей обещают ею быть. Полное описание ядерных сил пока еще отсутствует.
Положительные электроны, «позитроны»
На полученном в 1932 г. удивительном фотоснимке в камере Вильсона ясно видно, что существуют положительные электроны. Карл Андерсон фотографировал треки частиц высокой энергии, приходящих из космического пространства (прямо на нас). Этот всепроникающий поток космических лучей доходит до нас в виде смеси протонов, электронов, нейтронов и других частиц, заряженных и незаряженных. Первичными частицами являются протоны и другие атомные ядра с энергиями в миллионы или даже в миллиарды Мэв. Многие из них проходят, невредимо через нашу атмосферу, часть же тормозится в беспорядочных столкновениях, производя «вторичное космическое излучение»: γ-кванты, ливни электронов, протонов, нейтронов и мезонов. Магнитное поле Земли настолько сильно закручивает траектории заряженных частиц, что на экваторе частицы с низкой энергией не могут достигнуть поверхности Земли. Чтобы измерить импульсы этих частице помощью камеры Вильсона, физики, исследуя смесь первичных и вторичных частиц, используют сильное магнитное поле. Стенки из тяжелого металла задерживают частицы локального происхождения, они не задерживают космические лучи высоких энергий, и те проходят через камеру. Для того чтобы происходило расширение камеры, когда частица проходит в выбранном направлении, систему счетчиков Гейгера можно расположить по схеме «следящего телескопа». Электроны очень высокой энергии легко проходят через камеру, стенки и т. д., оставляя треки из водяных капель, сконденсировавшихся на ионах внутри камеры, которые можно сфотографировать. Ионы, созданные столь быстрой частицей, довольно редко разбросаны на ее пути. Поэтому оставленный ею трек выглядит «тонким», но тем не менее его легко можно сфотографировать. Андерсон сфотографировал трек, который был похож на трек быстрого электрона (импульс частицы определялся по отклонению в магнитном поле, пронизывающем камеру. При этом длина трека исключала возможность принять его за трек более тяжелой частицы, такой, как протон). Андерсон решил, что он обнаружил положительный электрон.
Задача 2. Доказательства того, что существует положительный электрон (см. фотографию Андерсона, фиг. 123)
а) Если Андерсон определил по форме, что это трек электрона, что нашел бы он, измерив кривизну трека в разных точках?
б) Если трек был закручен в сторону, противоположную большинству треков на подобных фотоснимках, то он был оставлен либо положительным электроном, подобным отрицательному, либо отрицательным электроном, который имел…?
в) Чтобы решить, какое из двух предположений в пункте б) правильно, Андерсон перегородил камеру металлической пластинкой, надеясь сфотографировать трек, который пронижет пластинку. См. его удачный фотоснимок. На основании чего по этому фотоснимку можно утверждать, что трек принадлежит положительному электрону?
Положительные электроны, называемые теперь позитронами, были предсказаны за несколько лет до этого П. А. М. Дираком на основе умозрительной теории. Так что, когда Андерсон сделал свое открытие, теория готова была его объяснить. В целях математической завершенности и симметрии развиваемой им теории Дирак предположил, что существует целое море электронов с отрицательной кинетической энергией, если хотите, нереальных и, следовательно, не наблюдаемых. Однако если одному из таких эфемерных электронов с «отрицательной энергией» — (е-) передать энергию (2mс2), достаточную для того, чтобы его энергия стала положительной, возникает обычный электрон е- и «дырка» в океане мифических — (е-) электронов. Эта «дырка» затем будет вести себя как реальный положительный электрон. Таким образом, теория предсказывала положительный электрон как нечто вроде зеркального отображения обычного электрона. В терминах «античастиц» позитрон отвечает «антиэлектрону».
Поскольку удалось обнаружить в камере Вильсона реальный е+-электрон, то начали искать, а затем и обнаружили ранее предсказанное событие рождения «из ничего» пары е+ и е-. γ-лучи высокой энергии, падая на атом, способны затратить свою энергию на создание пары электронов е- и е+. Это не что иное, как создание излучением вещества — материальных частиц (фиг. 156).
Задача 3. Энергия, необходимая для создания пары
Масса покоя электрона и позитрона одинакова и равна 1/1840 массы протона (масса протона соответствует энергии 940 Мэв).
а) Какой энергией (наименьшей) должен обладать γ-луч, чтобы быть способным родить пару е- и е+?
б) Какой кинетической энергией (в эв) должен обладать электрон, чтобы его полная масса в неподвижной системе координат была вдвое больше его массы покоя?
в) Насколько тяжелее казался бы β-луч с кинетической энергией 2 Мэв по сравнению с электроном, движущимся с малой скоростью?
г) Какую энергию (в эв) должен иметь γ-луч для создания пары е- и е+ и выбрасывания каждой частицы с кинетической энергией 2 Мэв?
Фактически γ-луч с такой энергией создал бы в камере Вильсона неподвижную пару. γ-луч с большей энергией (более крупный квант, с более короткой длиной волны) способен превратить избыток энергии в кинетическую энергию пары и толкнуть электрон и позитрон вперед. Тогда в камере Вильсона с магнитным полем такая пара будет видна как буква V (фиг. 124). Массивное атомное ядро служит γ-лучу как бы наковальней, на которой он выковывает пару — процесс идет при условии выполнения закона сохранения энергии и импульса. В камере Вильсона рождение пар происходит вблизи ядер атомов газа или ядер металлической пластинки, помещенной в камеру для того, чтобы сделать этот процесс более вероятным.
Когда было найдено, что многие искусственно созданные радиоактивные атомы излучают позитроны е+ (или β+), последние стали привычным явлением. Обычный атом, в ядро которого на циклотроне влетел лишний протон, часто оказывается нестабильным. Для своих размеров новое ядро чувствует себя пересыщенным протонами (или, что то же самое, обедненным нейтронами). Поэтому с большой вероятностью могут произойти следующие превращения:
[A] один из протонов —> нейтрон и электрон, причем электрон должен унести с собой положительный заряд, т. е. это должен быть β+ в силу универсального закона сохранения заряда[161]. Ядро другого радиоактивного атома может оказаться переобогащенным нейтронами, и тогда в нестабильном ядре:
[B] нейтрон —> протон + электрон, причем электрон уносит с собой отрицательный заряд, т. е. излучается β-[162].
Следовательно, утверждать, что нейтрон «состоит» из тесно связанных протона и электрона, по-видимому, нельзя. Правильнее говорить в более общем смысле (см. фиг. 135).
Упомянутые выше превращения [А] и [В] — это лишь тени более сложных событий, которые разыгрываются среди частиц и зарядов. Превращение типа [В] происходит спонтанно для свободных нейтронов: нейтроны радиоактивно распадаются на протон, электрон (1H+ и е-), и нейтрино с периодом полураспада, примерно равным 12 минутам. Превращение [А] не может происходить без затраты дополнительной энергии. В таком превращении, теперь это достоверно известно, также участвует нейтрино. Во всех превращениях выполняются два правила:
1. Сохраняется заряд: если возникают новые заряды, то при этом число положительных и отрицательных зарядов одинаково.
2. Сохраняется число частиц при условии, что частицы и им соответствующие античастицы (например, е- и е+) считаются «одинаковыми, но противоположного знака» и вычеркиваются при подсчете[163].
Общий вывод таков: «старое представление о том, что частица представляет собой связку других частиц, следует оставить и использовать для ядерных превращений установленные новые правила». На молекулы в химии распространяется старая идея кулинарного рецепта для приготовления торта: например, можно говорить, что молекула воды состоит из двух атомов Н и одного О.
Однако если распространить его дальше на субатомный уровень и говорить, что «нейтрон состоит из протона и электрона», то при этом можно ввести себя в заблуждение. Здесь кулинарная аналогия заведет нас слишком далеко. К подобным утверждениям следует относиться с осторожностью, как относятся к утверждению ребенка, вытащившего червяка из яблока и сказавшего: «Из яблока получился червяк!»
Приведем еще некоторые экспериментальные данные относительно структуры нейтрона:
1) Масса нейтрона на 0,001 а.е.м. больше массы протона. Если учесть связанный с массой дополнительный запас энергии 1 Мэв, выделение энергии в превращении нейтрон —> протон не является неожиданным. Однако такое превращение нельзя представить как простое раскалывание на куски нестабильного образования, потому что
2) хотя свободный нейтрон и нестабилен, в атомных ядрах он живет бесконечно долго,
3) хотя у нейтрона нет заряда, вокруг него существует магнитное поле, что, по-видимому, указывает на движение внутри него каких-то зарядов,
4) результаты обстрела нейтронов (в связанном состоянии в атомных ядрах) электронами как будто свидетельствуют о том, что магнитное поле существует и внутри нейтрона, однако в нем нет и намека на какие-либо заряды.
Существует предположение, что нейтрон обладает внутренней структурой, возможно, представляет собой протон с вращающимся вокруг него отрицательным мезоном. Однако такое предположение выглядит рискованным, поскольку, если его понимать буквально, оно находится в противоречии с некоторыми экспериментальными фактами.
Аннигиляция вещества
Может также происходить событие, противоположное рождению пар. Позитрон встречается с обычным отрицательным электроном, и они исчезают, рождая γ-лучи:
е+ + е- —> γ + γ.
Для того чтобы выполнялся закон сохранения энергии и импульса, в результате реакции должно возникать два γ-луча, движущихся в противоположных направлениях. Они и наблюдаются, если радиоактивный образец, излучающий β+, поместить между двумя цилиндрическими счетчиками. Счетчики тогда регистрируют одновременно пару γ-лучей как раз той энергии, которую следовало бы ожидать, — 0,5 Мэв каждый. Их энергию можно измерить по числу ионов, которые создаются в ионизационной камере γ-лучами при выбивании электронов.
Фиг. 136. а — аннигиляция; б — образование пар.
Задача 4. Аннигиляция электронов
Покажите, что, если при превращении пары электронов в пару γ-лучей не происходит потери массы, каждый γ-луч обладает энергией, равной 0,5 Мэв.
Лирическое отступление
Таким образом, соотношение Е = mс2 выполняется не только для быстрых частиц, но применимо также и к рождению и аннигиляции вещества. Критикам, отрицавшим это, говоря, что «электроны — не обычное вещество», пришлось ждать с 1930 по 1955 г., чтобы увидеть рождение ядер водорода — протонов и антипротонов. Сегодня на самых больших ускорителях можно получать частицы с энергией в несколько миллиардов электронвольт, которые способны создавать такие пары за счет своей кинетической энергии.
Теперь известны целые серии таких «зеркальных» пар: электроны и позитроны, протоны и антипротоны, нейтроны и антинейтроны. Частицы последней пары не обладают зарядами противоположного знака, так как у них вообще нет заряда, но они отличаются по своим магнитным и спиновым свойствам. Встречаясь друг с другом, частицы и античастицы немедленно аннигилируют. Некоторые ученые усмехаются над выдумками фантастов, когда они рисуют «антиматерию» и «антимиры», однако не следовало бы. Ведь предсказание Дирака о существовании положительных электронов вначале тоже казалось абсурдным.
Новые радиоактивные ядра
В наше время радиоактивные ядра с искусственной радиоактивностью легко получатся путем введения в них дополнительных нейтронов. При этом заряд ядра не меняется (тот же самый элемент, те же самые химические свойства), но обладает слишком большой массой, слишком большим числом нейтронов при данном числе протонов. Такая теснота чревата превращениями: переходом одного из нейтронов в ядре в протон. Это происходит при распаде нестабильного ядра. Причем рождаются «+» и «—» заряды; «—» заряд улетает из ядра в виде маленькой частицы: рождается электрон и уносится в виде β-луча. (Одновременно должно также испускаться невидимое нейтрино.)
Период времени с 1930 по 1940 г. был ознаменован богатым потоком ядерно-физических данных. Можно было похвастаться: квадратные клетки периодической системы элементов, отвечавшие каждому элементу, разрослись в целый ряд ячеек, в которых поселились различные изотопы. Стабильные и нестабильные, все — атомы одного и того же элемента, но с разной массой. Для каждого нестабильного изотопа добывалась новая информация: период его полураспада, частицы, которые он излучает, энергия, выделяющаяся при его распаде.
Фиг. 137. Таблицы
Сплошные черные квадратики изображают стабильные изотопы. Светлые квадратики — «искусственные» нестабильные радиоактивные изотопы, создаваемые при облучении и т. п. Крестиками помечены «естественные» радиоактивные изотопы, встречающиеся в природе. (Большинство из них, за исключением обычного калия, имеющего один радиоактивный изотоп, отвечают самым большим атомным номерам.)
На фиг. 138 приведена схема одного из опытов по облучению.
Фиг. 138. Ядерные превращения при бомбардировке меди на циклотроне.
Протоны с энергией 20 Мэв бомбардируют мишень из меди. В результате множества столкновений они останавливаются в ней, пройдя путь в 1 мм, причем почти каждый раз их кинетическая энергия переходит в тепло. Однако малая часть их, проходя вблизи ядра атома меди, попадает в область действия мощных ядерных сил и захватывается ядром. Иногда вслед за этим вместо протона вылетает нейтрон. Оставшееся же ядро оказывается радиоактивным ядром цинка. В иных случаях протон выбивает из ядра и протон, и нейтрон одновременно. Тогда получается ядро меди, но аномально легкое (Сu62) и радиоактивное.
Другой пример приведен на фиг. 139.
Фиг. 139. Получение радиоактивного натрия бомбардировкой дейтронами на циклотроне.
Ядра тяжелого водорода (дейтерия) ускоряют на циклотроне и направляют на мишень из естественного натрия. Дейтрон, попадая в ядра мишени, выбивает из них протоны.
В циклотрон вводят тяжелый водород, его ядра (дейтроны) ускоряют, а затем используют для бомбардировки мишени из естественного натрия. Дейтрон попадает в ядра атомов мишени и выбивает из них протон (что эквивалентно попаданию нейтрона в ядро натрия). При этом получается радиоактивный атом натрия с периодом полураспада, около 15 часов. Атом излучает β-лучи (и γ-лучи, уносящие некоторый избыток энергии), превращаясь в стабильный атом магния.
Радиоактивный натрий широко используется в научных исследованиях. В ничтожном количестве его добавляют к обычному натрию, затем получают соль и в таком виде прослеживают его путь через растения и животных. Можно также исследовать обмен атомами натрия между солью в кристаллическом состоянии и насыщенным ее раствором. Или же можно изучать, как замещает натрий другие атомы в органических молекулах. Присутствие радиоактивного натрия можно обнаружить счетчиком Гейгера, регистрируя β-лучи, сигнализирующие о распаде атомов натрия. Хорошим счетчиком можно обнаружить 0,00 000 000 000 000 000 001 кг, т. е. 10-20 кг радиоактивного натрия на естественном радиоактивном фоне.
Ядерные силы
Из экспериментов по рассеянию альфа-частиц (а также протонов и других частиц на ускорителях) было найдено, что в широком интервале расстояний сила, с которой действует какое-либо ядро мишени, есть обратно пропорциональная квадрату расстояния электрическая сила. Вне атома создаваемая зарядом ядра электрическая сила практически полностью экранирована электронным облаком этого атома. В то же время и внутри этого облака внешних электронов падающая на ядро заряженная частица испытывает действие только обратно пропорциональной квадрату расстояния электрической силы, описываемой законом Кулона.
В атомах легких мишеней, радиус которых порядка 1 A° во всей области расстояний, начиная с внешних частей электронного облака, т. е. с расстояний порядка 0,1 А° вплоть до расстояний, в тысячи раз меньших, порядка 0,00001 А°, единственное действующее поле — это поле силы Кулона. В электронном облаке это поле несколько слабее, так как электроны действуют с силой противоположного знака по сравнению с ядром, но это также поле кулоновских сил. Так что весь атом, начиная с расстояний от ядра порядка 1/10000 А° вплоть до его внешних областей, ~1 А° окружен кулоновскими полями. В тяжелых ядрах типа золота картина та же самая, только многоэлектронное облако простирается еще ближе к ядру.
Фиг. 140. Атомные силы.
Возвращаясь к модели холмов силовых полей, изложенной в гл. 8, модель атома Резерфорда можно изобразить в виде равномерно заостряющейся кверху колонны так, как это сделано на фиг. 141 (при этом модель атома Томсона изображалась бы в виде пологого бугра, покрытого неглубокими хаотически разбросанными воронками, занятыми электронами, фиг. 142).
Фиг. 141. Диаграмма энергетического холма. Закон квадрата обратного расстояния.
Отталкивание в атоме Резерфорда.
Фиг. 142. Диаграмма энергетического холма. Атом Томсона.
Представим себе, что сила Кулона отсутствует, а ядро ведет себя как твердый шар, сильно отталкивающий при «контакте» (жаргонный термин, означающий «при сближении на очень малое расстояние в атомном масштабе»). Тогда модель энергетического холма представлялась бы в виде плоской равнины с резко возвышающейся над ней узкой колонной, изображающей «контакт» (фиг. 143). Поле интенсивных сил притяжения изображалось бы в виде ямы с крутыми стенками (фиг. 144).
Фиг. 143. Диаграмма энергетического холма. Твердая, непроницаемая сердцевина малого радиуса в качестве мишени.
Фиг. 144. Диаграмма энергетического холма. Сила притяжения.
Представим себе, что в нескольких таких моделях, каждая из которых изготовлена со многими силовыми колоннами или ямами, представляющими большое число атомов в рассеивающей мишени, в разных направлениях пускаются маленькие шарики. Тогда в моделях с разной формой колонн пущенные снаряды будут рассеиваться в разных направлениях по-разному. В модели силы Кулона часть шариков будет рассеиваться на прямые углы (фиг. 145) и очень немногие из них — назад.
Фиг. 145. Рассеяние α-частиц или протонов.
По сравнению с ней модель узких колонн будет рассеивать гораздо меньше и точно так же, как и вывернутая по отношению к ней наизнанку модель ям с крутыми стенками, поскольку почти все снаряды будут проходить без отклонения. Если рассуждать в противоположном направлении, то окажется, что можно выбирать модели, используя экспериментальные данные по рассеянию. Бомбардировка протонами или другими частицами на все более крупных ускорителях дает возможность изучать рассеяние на все более близких к ядру расстояниях. Тогда обнаруживается, что модель холма для силы Кулона, хорошо оправданная в применении к рассеянию медленных α-частиц, имеет свои пределы применимости. Эксперименты по рассеянию показывают, что при максимальном приближении к ядру положительный снаряд испытывает меньшую по величине силу, чем та, которая должна быть согласно закону Кулона. Частицы, которые отскакивают назад при рассеянии, являются как раз частицами, приближающимися к ядру на максимально близкое расстояние. Их оказалось гораздо меньше, чем ожидалось.
На расстояниях порядка 0,00001 А° (10-15 м, или, как называют теперь физики-ядерщики, 1 ферми) начинают заметно проявлять себя новые силы. На этих расстояниях должны действовать силы притяжения очень малого радиуса действия, благодаря которым на вершине холма энергетический уровень делает перегиб, а затем погружается в яму. Такая впадина в центре представляет собой ядерную яму — жилище обитателей ядра, проживающих, по-видимому, в очень стесненных условиях. Обитателей стабильных ядер можно рисовать себе находящимися в яме на большой глубине, причем без какой-либо надежды выбраться из нее. В радиоактивных ядрах они занимают уровни, не слишком удаленные от края ямы: во всяком случае, эти уровни выше основного, так что у них есть шансы вырваться из нее. Отметим тот факт, что и холм, и яма не являются материальными категориями — каким-то подобием кофейной чашки, — а представляют собой лишь образы на энергетической диаграмме. Тем не менее они позволяют уяснить, как и почему составные части ядра находятся внутри ядра.
Фиг. 146. Ядерные силы и ядерная энергия.
α1 — α-частица в ядре с энергией нише «основного» уровня будет оставаться все время в нети — ядро стабильно; α2 — α-частица с такой энергией может вылетать из ядра; α3 — подобная α-частица пребывает вне ядра.
Фиг. 147. Модели ядерных энергетических холмов.
Бомбардировка нейтронами
Иная картина возникает, если в качестве исследовательских снарядов использовать не α-частицы и протоны, а нейтроны. В силу того, что у нейтрона нет заряда и, следовательно, электрического поля вокруг него, он, проходя мимо атома, не срывает его электроны. Не испытывает он отклонения и в поле кулоновских сил ядра. В большинстве случаев нейтрон движется, не испытывая отклонения ни возле атома, ни внутри атома, ни в непосредственной близости к ядру. Если нейтрон использовать как метательный снаряд, то в «модели холмов» атом для него представляется в виде энергетической плоской равнины. Однако нейтроны могут испытывать столкновения, если случается, что они проходят на очень близком расстоянии от ядра мишени. Тогда они рассеиваются, отклоняясь в сторону, или захватываются ядром и задерживаются в нем. Это показывает, что нейтроны испытывают действие ядерных сил[164], причем это силы очень короткого радиуса действия. Эти короткодействующие силы вполне могут оказаться теми же самыми силами, действие которых испытывают заряженные частицы. На тех расстояниях от ядра, где ядерные силы начинают прогибать вершину кулонова холма, на плоской равнине для нейтронов зияет глубокий колодец[165].
Думается, что при уменьшении жилой площади, приходящейся на каждого обитателя и так перенаселенного ядра, ядерные силы из сил притяжения переходят в силы отталкивания. Ядерное «племя» не должно ни слипаться в комок, ни разлетаться во все стороны.
Фиг. 148. Диаграмма энергетического холма в случае нейтрона, приближающегося к ядру.
Бомбардировка нейтронами. Упругие соударения
В большинстве случаев, если только мишень не состоит из легких ядер и столкновение не лобовое, нейтрон, проходя недалеко от ядра мишени, сталкивается с ним упруго, отдавая ему лишь малую часть своей кинетической энергии. При упругом столкновении с тяжелым ядром мишени, таким, как ядро свинца, даже в лобовом столкновении нейтрон теряет менее 2 % своей кинетической энергии; радиус действия ядерных сил настолько мал, что лобовые или близкие к ним соударения очень редки. Однако в силу того, что атомов много, поскольку даже кусочек вещества, который нам кажется крошечным, содержит их громадное число, нейтрон, проходя через мишень, быстро замедляется благодаря упругим столкновениям. Быстрый нейтрон (т. е. нейтрон с кинетической энергией ~1 Мэв, образующийся при делении U235) будет двигаться сквозь окружающий материал сначала с большой скоростью, затем со средней, а потом с малой скоростью до тех пор, пока он в столкновениях не замедлится до «тепловой» энергии (т. е. когда его кинетическая энергия сравняется с энергией молекул газа при температуре материала). Это приводит к тому, что полный пробег быстрого нейтрона в большинстве твердых тел составляет несколько сантиметров по сравнению с пробегом протонов или альфа-частиц с той же первоначальной энергией, равным нескольким тысячным долям сантиметра.
Фиг. 149. Бомбардировка ядер.
Бомбардировка нейтронами. Захват
Иногда при соударении на очень близких расстояниях нейтрон захватывается ядром мишени. Частота этих событий, по-видимому, сильно колеблется от одного элемента к другому и различна даже для изотопов одного и того же элемента. Вероятность захвата также сильно зависит, причем довольно сложным образом, от скорости нейтрона[166].
Часто новое ядро, образовавшееся после захвата, оказывается нестабильным, радиоактивным. Эксперименты по захвату нейтронов позволяют исследовать не только структуру ядра, но и получать новые нестабильные атомы. Ниже перечислены некоторые из нескольких сотен таких событий, известных в настоящее время.
Фиг. 150. Облучение нейтронами.
Фиг. 151. Получение дейтерия.
1) Ядро водорода поглощает нейтрон и становится ядром «тяжелого водорода» (дейтерий), которое представляет собой сильно связанные друг с другом протон и нейтрон
0n1 + 1H1 —> 1H2
2) Ядро серебра может поглотить нейтрон и стать радиоактивным. Особенно часто это случается для медленных нейтронов.
Это легко демонстрируется: стоит лишь замедлить быстрые нейтроны с помощью бака с водой, как серебряная монета становится радиоактивной (фиг. 152 и 153).
Фиг. 152. Получение радиоактивного серебра путем облучения нейтронами.
Фиг. 153. Облучение нейтронами.
Источником быстрых нейтронов служит смесь радия и бериллия. Нейтроны, сталкиваясь с ядрами водорода воды, теряют энергию в каждом столкновении, замедляясь до тепловых скоростей в результате примерно десятка столкновений. После этого у них велики шансы при тесном сближении с ядром атома серебра поглотиться им. Нейтроны, кроме того, сталкиваются с ядрами атомов кислорода, однако при столкновении с ними они теряют гораздо меньшую энергию. Иногда они захватываются ядрами атома водорода, образуя ядра «тяжелого водорода».
3) Ядро алюминия поглощает нейтрон, испустив α-частицу, превратившись в радиоактивный натрий — тот самый полезный изотоп, который получается при облучении натриевой мишени дейтронами:
0n1 + 13Al27 —> 11Na24 + 2He4
4) Ядро бора может поглотить медленный нейтрон и развалиться на ядро лития и α-частицу, разлетающиеся в разные стороны с суммарной кинетической энергией 2,8 Мэв. (Для регистрации медленных нейтронов в ионизационные камеры впускают газ, содержащий бор.)
0n1 + 5B10 —> 3Li7 + 2He4
5) Кадмий обладает исключительно большим сечением захвата медленных нейтронов, что делает его незаменимым при использовании в качестве поглотителя для управления ядерным реактором.
6) Радиоактивный углерод и «углеродные часы». Когда нейтрон попадает в ядро азота, он иногда выбивает из него протон, образуя ядро радиоактивного углерода:
0n1 + 7N14 —> 6C14 + 1H1
Радиоактивный углерод С14 распадается с периодом полураспада 5600 лет, испуская β-лучи и превращаясь снова в азот:
6C14 —> 7N14 + -1e0
Это дает чудесный способ для определения возраста археологических находок. Нашу атмосферу постоянно пронизывает поток нейтронов, входящих в состав приходящих издалека космических лучей или образуемых этими лучами в атмосфере (некоторые из них сталкиваются с атомами азота в воздухе и образуют С14). Эти атомы входят в состав содержащегося в атмосфере углерода (и в течение некоторого времени в океане) в основное в виде соединения СО2. Как известно, поток космических лучей оставался постоянным в течение многих столетий и привел к образованию малой, но неизменной доли радиоактивного углерода в мировом содержании СО2 — той доли, которая установилась в результате баланса между распадом и образованием нового СО2 в атмосфере. Но так как СО2 используется деревом для образования древесины (или морскими животными при формировании скелета), то углерод в этом соединении входит в твердый материал, в который не может больше поступать радиоактивный углерод из азота. Радиоактивная часть углерода распадается с периодом полураспада 5600 лет. Следовательно, измеряя содержание радиоактивного углерода в образце (скажем, в морской раковине), можно определить его возраст, т. е. сколько времени прошло с тех пор, когда содержащийся в нем углерод образовался в атмосфере. Для измерения такой β-активности были сконструированы чувствительные счетчики, и теперь можно определять возраст образцов кусочков древесины или одежды, оставшихся нам от древних цивилизаций[167].
Фиг. 154. Радиоактивный углерод.
а — образование: нейтроны бомбардируют азот; б — распад.
7) Деление. Иногда при поглощении нейтрона уран ведет себя странным образом. Обсудим это ниже.
Деление
Двадцать лет тому назад возникло подозрение, что при облучении урана медленными нейтронами образуются новые элементы, стоящие за последним элементом в периодической системе. Было ясно, что в облученном уране возникали и некоторые другие элементы, причем химический анализ показал, что они не были соседними по таблице элементами, такими, как обычные продукты распада при захвате. Было высказано предположение, что при этом создавались новые, еще не известные элементы. Затем химический анализ показал, что эти странные радиоактивные продукты были не сверхтяжелыми атомами, а изотопами хорошо известных атомов, расположенных в середине периодической системы элементов, таких, как барий, цезий, криптон, йод и многих других, каждый из которых проявлял себя в химических реакциях точно так же, как обычный атом того же элемента, в какие бы соединения он ни входил. Это было интерпретировано как разделение огромного ядра урана на два крупных осколка, не равных, но сравнимых по размеру. Это событие было названо делением по аналогии с процессом биологического деления клетки. Нейтрон, попадая в ядро урана, делал его нестабильным и раскалывал на две «половинки», которые разлетались друг от друга под действием колоссальной силы кулоновского отталкивания их зарядов.
Массивные «осколки деления» разлетались друг от друга, унося с собой громадную кинетическую энергию, в сумме около 200 Мэв.
Фиг. 155. Уран и нейтроны.
Представление о ядре как колеблющейся капле может совершенно неверно трактовать истинный механизм деления ядра. Эта картина может быть совершенно неоправданной при попытке описать механику микроскопического процесса, происходящего внутри ядра, хотя использование этой аналогии, с ее математическим описанием, привело к появлению плодотворных рабочих гипотез. Как бы там ни было, наблюдаемые факты таковы: нестабильное ядро U236 делится на два крупных неодинаковых осколка за очень короткое время, испуская при этом нейтроны.
Фиг. 156. Деление урана.
Пример «генеалогического древа» для пары возможных продуктов деления.
Ядро атома U236 делится различными способами. На приведенных рисунках изображен един из таких способов вместе со всеми последующими превращениями двух радиоактивных «осколков деления».
В камерах Вильсона это событие было сфотографировано, а энергии «осколков» измерены с помощью ионизационных счетчиков. Большая часть энергии освобождается в результате простого электростатического отталкивания между «половинками» ядра, заряженными положительно (заряд каждой «половинки» по величине равен нескольким десяткам зарядов электронов), разбегающихся из своего невероятно тесного жилища. При этом важно не только то, что выделяется потрясающее количество энергии, но и то, что появляется возможность возникновения цепной реакции, поскольку кроме осколков деления вылетает еще несколько нейтронов. Нельзя ли устроить так, чтобы эти нейтроны делили другие атомы урана или чтобы урановый блок взрывался? В случае естественного урана — смеси изотопов — нет: нейтрон легко вызывает деление только чистого U235.
Обычно нейтрон поглощается естественным ураном, его изотопом U238. С помощью масс-спектрографа было показано, что уран состоит из двух изотопов U235 и U238 и очень редкого изотопа U234. На масс-спектрографе же были отделены друг от друга ничтожные количества этих изотопов. Когда они были исследованы, то свойство делиться было обнаружено лишь у U235. При этом деление происходило чаще при захвате медленных нейтронов, чем быстрых. Изотоп U238 также сильно поглощал нейтроны, особенно быстрые. Естественный уран представляет собой смесь: 99,3 % U238 и только 0,7 % U235, который хорошо делится. Если деление происходит в куске естественного урана, то быстрые нейтроны, которые при этом образуются, в основном, захватываются ядрами U238 и цепной реакции не получается. Только в куске чистого U235 могла бы возникнуть цепная реакция, так что он мог бы взорваться, как бомба. Многое из этого уже было известно или предполагалось к началу второй мировой войны, когда изготовление атомной бомбы стало одновременно и военной, и научной задачей.
Прежде чем обсуждать, как используется деление (а теперь и синтез), повторим некоторые ранее приведенные рассуждения о топливе и взрывах.
Замечание о мирном и военном использовании горючего
Человек не может жить без горючего: приготовление пищи, отопление и освещение, машины для фабрик, транспорта и связи — все это требует горючего в той или иной форме. Большинство орудий войны, начиная с примитивного копья, брошенного за счет поглощаемой с пищей энергии, и кончая современными снарядами, выбрасываемыми раскаленными газами, требует горючего.
Фиг. 157. На первом рисунке представлена химическая реакция С + О2 —> СО2. На других рисунках представлены некоторые ядерные превращения.
Сегодня почти все наше горючее черпается из лучей Солнца, упавших давно или падающих в настоящее время. Мы быстро тратим наши запасы солнечного света, и нашим пра-пра-пра… правнукам придется жить на то, что они сами заработают, т. е. на доходы, а не на проценты от капитала. Уже сейчас уровень цивилизации в существенной степени определяется запасами горючего; открытие новых его источников или потеря старых может способствовать или, наоборот, затруднять жизнь нации. Там, где запасы 500 нефти истощаются или уходят к другому потребителю, там, где дорожает уголь из-за естественного требования шахтеров улучшить их жизненный уровень, там, где улучшение условий жизни всего народа требует больших затрат горючего для отопления и для работы машинного оборудования, люди заинтересованы в открытии новых источников полезной энергии: они ищут новые залежи угля и нефти, строят новые плотины, ветряные двигатели и мечтают использовать ядерную энергию. В далеком будущем из-за роста населения людям, по-видимому, будет угрожать голод из-за истощения источников горючего и свежей воды, если, конечно, человек не научится использовать новые источники, такие, как те, которые в настоящее время обещает дать использование деления и синтеза ядер.
Современный снаряд вылетает из пушки благодаря превращению химической энергии в тепло и может взорваться только за счет дальнейшего мгновенного выделения тепла. И это всё, что представляет собой взрыв: запас потенциальной энергии мгновенно переходит в тепло, сообщая громадную кинетическую энергию всему окружающему: газовым молекулам, осколкам бомбы… поршню автомобиля. При взрыве газ сильно нагревается и благодаря высокой скорости его молекул оказывает высокое давление. Раскаленный сжатый газ давит на окружающий воздух за счет столкновений молекул друг с другом, и его энергия разносится во все стороны сильной волной сжатия — это и есть та звуковая волна взрыва, которая при мощном взрыве приносит большие разрушения.
Запас любого вида энергии, способной выделиться мгновенно, может дать взрыв: сжатый газ в воздушном пистолете или бутылка содовой (кинетическая энергия движения молекул); хлопок в ладоши (кинетическая энергия); бензин с кислородом, порох и динамит (химическая энергия). Взрывчатое вещество не всегда взрывается — углекислый газ может просочиться под крышкой бутылки, насыпанный в кучку порох может сгореть совершенно спокойно. Чтобы происходил взрыв, энергия должна освобождаться быстро: длинная цепь маленьких взрывов способна создать лишь фейерверк. Кроме того, энергия должна выделиться в малом объеме. Именно тогда возникает резкий толчок взрывной волны, а не просто столб дыма. Поэтому бомба должна быть сделана из компактного материала, причем при взрыве горение должно быстро распространяться по всему веществу: один кусок горящего вещества должен поджигать другой, этот — следующий и т. д. Но такая стационарная цепная реакция[168] горения дала бы слабый взрыв. В развивающейся цепной реакции воспламенение должно быстро нарастать, что произойдет, если один кусок воспламеняющегося вещества будет поджигать несколько соседних, а каждый из них — несколько других.
Для иллюстрации возьмите обойму бумажных спичек и подожгите крайнюю из них. Вдоль обоймы пойдет стационарная цепная реакция. Возьмите теперь большой коробок спичек или сложите вместе несколько обойм бумажных спичек и подожгите одну из них. Получится развивающаяся цепная реакция.
Разумеется, скорость цепной реакции не может расти до бесконечности, так как для этого не хватит материала. Она будет расти до некоторой максимальной величины, а затем ее рост оборвется из-за отсутствия вещества.
Деление и захват нейтронов
При делении образуются очень быстрые нейтроны с кинетической энергией ~1 Мэв. Прежде чем замедлиться до «тепловых» скоростей и иметь энергию, равную средней кинетической энергии соседних атомов, они проходят свыше десятка сантиметров в окружающем уране. Для того чтобы понять устройство ядерной бомбы и ядерного реактора, необходимо знать, как зависит от скорости нейтрона вероятность его захвата ядром урана.
Атомная бомба. Получение U235
Чтобы изготовить атомную бомбу, необходимо было выделить чистый U235 из естественного U238, иначе последний, захватывая нейтроны, мешал бы цепной реакции. Разделение казалось безнадежным делом, так как тот и другой уран являются атомами одного и того же элемента и, следовательно, обладают одинаковыми химическими свойствами. Были известны физические методы разделения изотопов (например, диффузионный метод разделения газов), но могли ли они быть использованы в широком масштабе, достаточном для производства необходимого для бомбы материала? (Подробности о методах, которые пытались тогда применять, о трудностях и успехах можно найти в книгах об «атомной энергии»[169]. Один из успешных методов состоит в том, что пары гексафлуорида урана заставляют диффундировать через перегородку с очень мелкими порами. Молекулы с U235 обладают большими скоростями, чем молекулы с U238, поэтому они проскакивают через поры быстрее. Одна стадия диффузии дает лишь слабое разделение. За тысячи же стадий — цикл за циклом, при экономном возвращении в циклы «выжатых» фракций, удается получить поток достаточно чистого U235. (См. диаграммы в гл. 25, задачу 11 в гл. 25 и задачу 3 в гл. 30.)
Другой метод состоит в использовании установки, напоминающей масс-спектрограф огромного размера. На такой установке вначале получают ионы урана, затем ускоряют их до нужной энергии в электрическом поле и закручивают их траектории с помощью сильного однородного магнитного поля. Ионы описывают орбиты в форме полукруга, один конец которого выходит из жерла ионной пушки, другой упирается в маленький стакан для сбора ионов.
Фиг. 158. Иллюстрация цепной реакции на модели «буквенной цепи».
Эта модель состоит в том, что читатель посылает в три адреса сообщение с одной буквой, прося каждого адресата в свою очередь послать в новые три адреса по букве, а — развивающаяся цепная реакция. Скорость такой реакции зависит от числа букв, посланных на каждой стадии. Скорость реакции быстро возрастает, и реакция носит «взрывной» характер. (Это модель бомбы.) б — стационарная цепная реакция. В данном случае скорость реакции на всех стадиях постоянна. (Это модель реактора, работающего в стационарном режиме.) (Рисунки заимствованы из книги К. Мендельсона «Что такое атомная энергия?», опубликованной Мартином, Зеккером и Варбургом в Лондоне, рисунки Виктора Рейнганума и автора книги.)
Ионы U235, как более легкие, описывают полукруг меньшего радиуса и собираются в отдельный стакан. В расчете на единицу выхода эта схема более дорогая, но с ее помощью, по-видимому, получали наиболее чистые образцы, необходимые для первых экспериментов. Та же установка может быть использована для разделения других, необходимых для исследования изотопов, например продуктов деления.
Ясно, что, когда военным властям предложат новую взрывчатку, они зададут очевидный вопрос: «Вы уверены, что она сработает? А нельзя ли попробовать взорвать маленький образец?» В данном случае на оба эти вопроса ученые ответили: «Нет». Они добавили: «Мы надеемся, что она сработает, и наша надежда основана на прочной теории. Мы знаем, что маленькая бомба не сработает». Причина, по которой они настаивали именно на большой бомбе, заключалась в следующем: при каждом делении урана испускается лишь несколько нейтронов, и их легко потерять.
Для того чтобы выделение энергии в цепной реакции происходило со взрывом, эти нейтроны должны способствовать новому делению. Они не должны поглощаться другими атомами, такими, как U238, но и не должны быть потеряны. А потерять нейтрон очень легко — ведь он так ловко проскакивает через вещество. Из маленькой бомбы нейтроны, возникшие при делении, все выскочили бы, и попытки взорвать ее окончились бы неудачей. В очень большой бомбе, содержащей кусок U235, нейтроны деления сновали бы между атомами урана до тех пор, пока не столкнулись бы с ними и не вызвали новые акты деления.
Бомба небольшого размера не может взорваться, большая — обязана. Между этими двумя предельными размерами существует определенный «критический размер», такой, что кусок U235, меньший критического размера, не взорвется, а больший — взорвется. Критический размер составляет всего несколько кубических сантиметров, а вес — лишь несколько килограммов: уран настолько тяжел, что его 1 см3 весит около 0,02 кг. Критический размер считался военным секретом, но, зная «размеры» ядер[170], можно было легко догадаться, каков он. Теперь, когда хорошо известны площади мишеней — ядер U235 по отношению к захвату нейтронов (поперечные сечения захвата нейтронов), критический размер может вычислить любой достаточно образованный физик-теоретик любой страны.
Фиг. 159. Деление урана: цепная реакция.
Рисунки весьма схематичны. Клетка с надписью «деление» обозначает именно это событие. Нейтроны, возникающие при делении, разлетаются во все стороны. На рисунке же они показаны вылетающими вперед, чтобы показать последовательные стадии процесса размножения.
Для взрыва обычной бомбы необходим взрыватель или детонатор. В случае атомной бомбы дело обстоит иначе. Большая бомба взорвется сразу, как только случайные нейтроны, всегда присутствующие в космических лучах (или возникающие при спонтанном делении), вызовут в ней хотя бы одно деление. Следовательно, бомбу необходимо изготовлять из кусков, каждый из которых имеет размер, меньший критического, и не может взорваться самопроизвольно. Далее эти куски необходимо соединить быстро, настолько, чтобы бомба не успела взорваться раньше, чем она будет полностью собрана. Нужно взять, скажем, два куска U235, каждый размером 3/4 критического, и мгновенно стукнуть их друг о друга так, чтобы получился кусок в 1 1 1/2 критического размера, который бы после этого взорвался. Это можно сделать быстро, скажем, выстрелив из маленькой пушки одним куском урана по другому. Как это делается в действительности, — наверно, военный секрет. Самый же главный «секрет»[171] — то, что это вообще можно сделать, — был разглашен самим взрывом атомных бомб.
При взрыве атомной бомбы массой порядка 2,5 кг урана рассеивается много неподелившегося материала. Поэтому нельзя оценить всю выделившуюся энергию, считая, что каждый атом U235 дает 200 Мэв. Но даже с поправкой на неполное использование материала и на утечку нейтронов энергия, выделяющаяся при взрыве бомбы, огромна. Выделение энергии (кинетической энергии осколков деления) настолько велико, что взрыв сопровождается мощным потоком все испепеляющего излучения и сильнейшей ударной волной сжатия. Продукты деления, избыточные нейтроны[172] и гамма-лучи способны производить сильные и глубокие радиационные повреждения.
Фиг. 160. Принцип устройства атомной бомбы. (Весьма схематическое изображение.)
а — в куске делящегося материала, например U235, размер которого меньше критического, цепная реакция не может развиваться из-за утечки нейтронов; б — кусок делящегося материала с размером больше критического можно составить из более мелких кусков. В большом «блоке» цепная реакция, начавшись, будет нарастать взрывным образом. В разгоняющейся цепной реакции нейтроны, возникающие в каком-либо делении, дают более чем одно новое деление. Однако имеет место утечка большого числа нейтронов.
Реакторы. Производство плутония
После открытия деления была прослежена судьба поглотившего один нейтрон атома U238[173]. Новое ядро, U239, нестабильно, оно излучает β-лучи и скоро превращается в атом неизвестного элемента, стоящего за ураном в периодической системе элементов. Ядро 92U239 излучает β-лучи и становится 93?239. Новый элемент тоже нестабилен. Он, излучая β-лучи, превращается в другой неизвестный элемент. По аналогии с планетами следующие за ураном новые элементы были названы нептунием и плутонием.
0n1 + 92U238 —> 92U239 —> -1e0 + 93Np239 —> -1e0 + 94Pu239.
Из теории, достаточно хорошо описывающей свойства ядер, следовало, что плутоний должен так же хорошо делиться, как и U235. Опыты по бомбардировке крошечных образцов на циклотроне подтвердили это. Таким образом, возможен новый материал для бомбы, причем гораздо более просто получаемый. Плутоний отличается по своим химическим свойствам от урана, поэтому его можно отделять химическим способом.
Это был новый элемент, ранее неизвестный, получаемый в ничтожном количестве на циклотроне: зачастую всего лишь несколько атомов. Нельзя ли получить его в большом количестве для изготовления бомбы? Когда нейтроны простреливают толстый блок естественного урана, они почти все поглощаются атомами U238, рано или поздно давая плутоний. Но где взять громадное количество необходимых для этого нейтронов? От делящегося U235.
При делении возникают очень быстрые нейтроны, которые скоро замедляются, сталкиваясь с окружающими ядрами. К сожалению, ядра U238 настолько сильно поглощают нейтроны промежуточной энергии, что для начала деления U235 и тем самым для поддержания потока нейтронов не осталось бы ни одного нейтрона. Медленные нейтроны, наоборот, легко поглощаются U235, вызывая его деление. Так что задача состояла в том, чтобы замедлить нейтроны и не дать им всем успеть поглотиться в случае, когда они имеют промежуточную скорость. Тогда была предложена и опробована следующая схема, приведшая в конце концов к успеху.
Большие блоки урана (U235 и U238 в природной смеси) помещались в огромный реактор, заполненный каким-нибудь легким элементом, действовавшим как замедлитель. В замедлителе нейтроны тормозились, не поглощаясь, благодаря (редким) упругим столкновениям с его ядрами, в каждом из которых терялась малая доля их энергии. Вода была бы идеальным замедлителем, если бы входящий в ее состав водород не имел тенденции захватывать нейтроны, превращаясь в «тяжелый водород» — дейтерий. Сам дейтерий тяжелой воды тоже был бы хорошим замедлителем, но отделение тяжелой воды от обычной стоит дорого. Довольно хорошим замедлителем является чистый углерод, ядра которого только в 12 раз тяжелее нейтрона. (В лобовом соударении нейтрон теряет 15 % своей кинетической энергии.) Вылетевшие при делении U235 нейтроны блуждают по урану и замедлителю до тех пор, пока они не замедлятся до скоростей молекул газа, находящегося при комнатной температуре, т. е. до «тепловых энергий», составляющих примерно 1/30 эв. Тогда с большей вероятностью они поглощаются U235 (и вызывают новое деление), чем U238. Атомов U238 гораздо больше, но они захватывают нейтроны промежуточных скоростей и очень слабо — медленные нейтроны.
Фиг. 161. Получение плутония.
а — уран и нейтроны. Время от времени быстрый нейтрон захватывается ядром U238, причем последнее становится более тяжелым ядром урана. Это ядро нестабильно (радиоактивно), оно излучает β-лучи. Так как такое ядро урана перенасыщено нейтронами, оно заставляет один из его нейтронов превратиться в протон, причем возникающий + заряд компенсируется — зарядом, уносимым β-лучом. Новое ядро имеет заряд +93 е, т. е. оно является ядром нового элемента, на одну клетку отстоящего от урана в периодической системе элементов. Этот элемент называется нептунием; б — ядро атома нептуния нестабильно. Оно излучает β-лучи, превращаясь в ядро плутония. Плутоний от урана можно отделить химическим путем; в — плутоний, как и U235, является делящимся материалом. Кроме того, он нестабилен, так же как уран или радий, и, излучая α-частицу, превращается в U235.
При определенном соотношении между урановыми блоками и окружающим замедлителем в таком реакторе нейтроны ведут себя следующим образом: один из нейтронов, возникающих при каждом делении U235, замедляется, а затем осуществляет новое деление U235. Остальные нейтроны, вылетающие при делении U235, как быстрые, так и медленные, захватываются атомами U238 и ведут к образованию плутония.
Подобно бомбе, самоподдерживающийся реактор должен обладать размером больше некоторого критического, иначе из него будет выходить слишком много нейтронов[174].
Фиг. 162. Реактор; нейтроны в «ядерном котле» из урановых блоков, окруженных замедлителем.
(Прямыми отрезками показан путь нейтронов между отдельными столкновениями. Различная, толщина отрезков характеризует величину скорости нейтрона.) а — нейтрон вызывает деление, в результате которого возникают 3 нейтрона; б — нейтрон вызывает деление; один из образовавшихся 3 нейтронов вызывает новое деление. Другой поглощается ядром U238.
Критический размер для реактора на естественном уране с графитовым замедлителем равен примерно размерам коттеджа, даже если он окружен отражателем нейтронов из тяжелого металла. Непрерывно «сгорая», U235 дает не только нейтроны, но колоссальный поток тепла, за счет осколков деления. Для охлаждения реактора необходимы громадные вентиляторы или целые реки воды. Тепло можно использовать для производства полезной энергии в большом масштабе. При этом, однако, возникает серьезная проблема защиты от радиоактивности.
Чтобы получить плутоний, необходимо извлечь уран из реактора, растворить его и химическим путем отделить плутоний от неиспользованного урана и продуктов деления. Так как такая смесь обладает высокой радиоактивностью, это разделение должно производиться на расстоянии. Полученный плутоний служит материалом для изготовления атомных бомб или компактных реакторов, используемых в качестве источников тепловой энергии.
Открытие плутония — выдающееся достижение. Человек сумел получить доселе не известный элемент, причем не в количестве одного-двух атомов, а сотни граммов.
Фиг. 163. Схематическое изображение, дающее общее представление о процессе получения плутония.
Фиг. 164. Реактор (схематический вид).
а — в «ядерном котле», состоящем из урановых блоков, помещенных в графитовый замедлитель, и окруженном защитной оболочкой, охлаждающей воде сообщается громадное количество тепла. При делении U235 возникают осколки деления, выделяются тепло и нейтроны. Один из нейтронов деления вызывает новое деление, додерживая цепную реакцию на стационарном уровне. Другие нейтроны теряются из-за утечки либо поглощаются U238, который в результате последовательных двух превращений становится плутонием. Затем урановые блоки извлекаются и подвергаются химической обработке, выполняемой на расстоянии с помощью манипуляторов, с целью отделить плутоний и продукты деления от «несгоревшего» урана; б — реактор для получения радиоактивных атомов. Внутри защитной оболочки находится газ нейтронов, движущихся подобно молекулам сквозь графитовый замедлитель и урановые блоки. Образец, помещенный в такой «нейтронный газ», подвергается обстрелу большого числа нейтронов, в результате чего некоторые из атомов превращаются в другие атомы, среди которых могут оказаться радиоактивные. Пучок нейтронов, выходящий через отверстие в оболочке реактора, также можно использовать для облучения образцов.
Использование нейтронов в реакторах
Успешное использование реакторов зависит от числа нейтронов, возникающих при одном акте деления U235. Этих нейтронов не слишком много, но достаточно, чтобы мог работать крупный реактор. При делении возникает иногда 1 нейтрон, иногда 3, иногда больше. В среднем на одно деление U235 приходится около 2,5 нейтрона. Эта величина имеет очень важное экономическое значение. Если бы это число равнялось 1,00 или меньше, цепная реакция была бы невозможна. Но если бы оно было во много раз больше, скажем 10, цепная реакция развивалась бы легко и критический размер был бы мал.
Из среднего числа нейтронов деления, равного 2,5, один нейтрон может вызвать новое деление, а один или два нейтрона могут:
а) избегнув захвата, выйти из реактора или поглотиться, не дав никакого выхода;
б) вызвать новое деление и, следовательно, способствовать развитию взрывной цепной реакции;
в) образовать новое делящееся ядро, например поглотиться в U238, которое затем превращается в ядро плутония.
Реакторы с расширенным воспроизводством ядерного горючего (бридерные реакторы)
Грамотно сделанный реактор должен быть достаточно велик по размерам, чтобы утечка нейтронов была мала, и изготовлен из материалов, поглощение нейтронов в которых не проходит даром. В таком реакторе может быть столько нейтронов деления, что число образующихся атомов плутония больше числа делящихся атомов U235. Это так называемый «реактор с расширенным воспроизводством горючего», т. е. реактор, в котором образуется больше нового делящегося вещества (из U238), чем сгорает U235, или плутония.
Так же как и в других реакторах, в рассматриваемом реакторе выделяется громадное количество тепла: акты деления происходят непрерывно, с постоянной скоростью, причем в каждом выделяется около 200 Мэв. Это тепло отводится циркулирующим потоком жидкости или газа, и реактор может служить источником полезной энергии.
Будущее ядерной энергетики
Можно знать, как нужно облучать стабильный атом маленькими снарядами, такими, как нейтрон, чтобы получить нестабильное ядро. Но отсюда совсем неясно, какая при этом выделится энергия. Тем не менее величину выделяемой энергии в ядерных событиях можно предсказывать на основании точных масс-спектрографических измерений масс. Для этого нужно воспользоваться соотношением Е = mс2. Если известно, на какие продукты распадается ядро лития при бомбардировке, энерговыделение можно вычислить по измеренным массам. Аналогично, если известно, на какие продукты делится ядро U235, можно предсказать величину выделяемой энергии. Более того, можно четко указать, при делении каких элементов энергия будет выделяться.
Считается, что ядро состоит из протонов и нейтронов, которые объединяются общим названием нуклоны. Представим себе процесс образования ядра из отдельных нуклонов. При сближении нуклоны должны притягиваться друг к другу и, образуя ядро, должны отдать часть своей энергии. При этом они оказываются тесно связанными, так что для того, чтобы оторвать их снова друг от друга, необходимо затратить определенную энергию. Поскольку нейтроны при объединении отдают часть своей энергии, получающееся ядро обладает несколько меньшей массой. Если бы при упаковке в ядро нуклоны не притягивали друг друга с большой силой, масса ядра была бы равна сумме масс образующих его нуклонов. В качестве примера рассмотрим какое-нибудь ядро, скажем литий. Ядро 3Li7 состоит из 3 протонов и 4 нейтронов. Согласно измерениям (на масс-спектрографе), его масса в атомных единицах равна 7,0165. Масса свободного протона равна 1,0076, а нейтрона 1,0089. Сумма масс
3∙1,0076 + 4∙1,0089 = 7,0588.
Эта сумма больше истинной массы, равной 7,0165. Поэтому при объединении в ядро Li7 нуклоны «потеряли» некую часть своей массы, или, точнее, при этом выделилась энергия, унесшая эту массу с собой. Казалось бы, потеря массы невелика, но она отвечает огромной энергии (45 000 000 эв на одно образовавшееся ядро Li7).
Подобный эффект имеет место для любого ядра в периодической системе элементов (кроме Н1): масса ядра всегда меньше суммы масс составляющих его нуклонов. Поэтому при образовании любого ядра из протонов и нейтронов, а это возможно, должна выделяться огромная энергия. Эта энергия называется энергией связи ядра. Иными словами, энергия связи — это энергия, которую необходимо затратить, чтобы разорвать ядро на отдельные нуклоны.
При объединении в ядро составляющие его нуклоны должны потерять часть своей массы — массу, отвечающую энергии связи.
Фиг. 165. Энергия связи.
а — энергия связи равна той энергии, которая выделилась бы, если бы нейтроны и протоны соединить вместе и образовать составное ядро; б — поэтому энергия связи равна той энергии, которую нужно затратить, чтобы ядро разбить на куски; в — энергия связи на нуклон — наибольшая для самых стабильных ядер средних элементов.
Фиг. 166. Треки осколков деления на фотоснимках в камере Вильсона.
На этих снимках осколки деления оставили толстые треки, что свидетельствует о большой величине заряда осколков. Некоторые из треков меньшей толщины созданы протонами, выбитыми нейтронами пучка, другие — а-частицами из урана (J. К. Воggild, К. J. Brostrom, Т. Lauritsen, Royal Danish Academy of Arts and Science). Трек осколка деления ядра урана (слева) при облучении нейтронами. Осколок деления, двигавшийся через газовую смесь водорода и водяного пара, выбивал вперед и вбок (короткие следы) протоны, испытав одно сильное столкновение с ядром кислорода (длинный трек).
Фиг. 167. Треки двух осколков деления ядра урана, выходящие из тонкой металлической пластинки, помещенной посреди камеры.
Фиг. 168. Фотоснимок в камере Вильсона: космические лучи».
Частицы космических лучей, проходя сквозь слой плотного вещества над камерой, создают электроны и позитроны (быстрые и медленные), оставляющие след в камере, помещенной в сильное магнитное поле. На снимке видно необычное событие: распад нестабильной частицы (два жирных трека в виде буквы V).
По измеренным массам атомов можно вычислить энергию связи и, зная ее величину, предсказать величину энергии, которая должна выделиться в том или ином ядерном событии, малая при бомбардировке или большая при делении и синтезе ядер. Однако в силу того, что нам приходится иметь дело с разными ядрами, распадающимися различными путями, подсчет энергии легче производить, если пользоваться массой, приходящейся на один нуклон, т. е. отношением массы всего ядра к полному числу нуклонов. Тогда ясно, что если в каком-либо событии масса на один нуклон уменьшилась, то нуклоны потеряли часть своей массы и, следовательно, при этом выделилась какая-то энергия. Поэтому обычно рисуют очень важный график: масса на один нуклон в зависимости от массового числа для всех элементов. Из этого графика сразу видно, какую массу потерял каждый нуклон при образовании того или иного атома: достаточно сравнить значение массы на один нуклон в этом атоме со средней массой изолированного нуклона — величиной, значение которой лежит где-то между 1,0076 для протона и 1,0089 для нейтрона, скажем 1,0083. Чем ниже точка, отвечающая тому или иному атому на графике, тем больше его энергия связи.
Фиг. 169. Треки в фотоэмульсии.
Треки частиц здесь образуют не капельки воды, как в камере Вильсона, а почернение в фотоэмульсии из-за выделившихся частичек серебра. На этом фотоснимке, сильно увеличенном, показана «звезда», или «взрыв» ядра: частица космических лучей столкнулась с одним из ядер фотоэмульсии, вероятно с ядром серебра, и разбила его на 7 протонов, 5 альфа-частиц и несколько тяжелых осколков. Трек первичной частицы не виден.
Масса на один нуклон вычисляется следующим образом:
МАССА на ОДИН НУКЛОН = МАССА ЯДРА/ЧИСЛО НУКЛОНОВ
где
МАССА ЯДРА = МАССА НЕЙТРАЛЬНОГО АТОМА — МАССА ЕГО ЭЛЕКТРОНОВ.
МАССА АТОМА атома (или, точнее, его ИОНА+) измеряется на масс-спектрографе с высокой точностью; она выражается в атомных единицах массы (в этих единицах масса О16 равна 16,0000); число нуклонов в атомном ядре (протоны + нейтроны) — его массовое число — это масса атома (в атомных единицах массы) («атомный вес»), округленная до ближайшего целого числа.
Для любого атома в периодической системе элементов, равно как и для всех его изотопов, масса ядра (в атомных единицах массы) мало отличается от целого числа. Например:
— масса водорода равна примерно 1, точнее 1,0076
— масса лития 7,0165
— масса железа меньше 56, а именно 55,938
— масса ядра урана 235,068
Это целое число (1…. 7…. 56…. 235….) означает число нуклонов в ядре, т. е. его массовое число. Разности между атомными (или ядерными) массами и целыми числами показывают различия в энергиях связи — в величине энергии, выделяемой при объединении нуклонов в ядро.
Если массу ядра разделить на число нуклонов, т. е. на массовое число, то получаются величины, которые начинаются с 1,009 для нейтрона и 1,008 для протона, а затем падают по величине до минимального значения, равного 0,9993 для «средних элементов», таких, как железо, медь, бром, криптон, и далее медленно возрастают примерно до 1,0003 в случае урана. Поэтому, если бы тяжелое ядро можно было поделить на два промежуточных ядра, то его нуклоны потеряли бы значительную массу в силу большого выделения энергии. Как это видно из графика от урана к средним элементам, масса на один нуклон падает примерно на 0,001. Для 235 нуклонов в ядре U235 масса, отвечающая выделенной энергии, была бы равна 235∙0,001, т. е. 0,235 а.е.м. Энергия, отвечающая такой массе, равна 0,235∙931 Мэв, т. е. около 200 Мэв.
Фиг. 170. Кривая «масса, приходящаяся на один нуклон в ядре», в зависимости от массового числа:
Масса, приходящаяся на один нуклон = Масса ядра, найденная с помощью масс-спектрографа / Полное число протонов и нейтронов
Фиг. 170. (продолжение)
Из графика следует, что энергия при делении может выделяться только в случае тяжелых ядер. Ядра средних элементов — самые стабильные: их нуклоны не могут потерять массу, в какую бы сторону ни двигаться на графике: влево или вправо, т. е. они обладают самой большой энергией связи.
Энергия, выделяющаяся при синтезе ядер
Энергия может выделяться не только при делении, но и при синтезе, т. е. при слиянии легких ядер. Кривая на графике падает от легких ядер к средним, а это значит, что при синтезе должна выделяться энергия. В отличие от деления для синтеза нет необходимости в нейтронах. В этом случае задача состоит в том, чтобы, преодолев электрическое отталкивание, сблизить легкие ядра на достаточно малые расстояния друг от друга, где уже начинают действовать между ними ядерные силы притяжения. Если бы можно было заставить два протона и два нейтрона объединиться в ядро атома гелия — или же четыре протона с соответствующими превращениями, — то при этом выделилась бы огромная энергия.
Заставить сблизиться ядра можно с помощью нагрева до высоких температур, когда в результате обычных столкновений ядра смогут сблизиться на столь малые расстояния, чтобы ядерные силы вступили в игру, и произошел синтез. Начавшись, процесс синтеза, по-видимому, сможет дать такое количество тепла, которое нужно для поддержания высокой температуры, необходимой для дальнейших слияний ядер. При этом получился бы грандиозный фейерверк, размеры которого контролировались бы только количеством необходимого материала. Такой процесс, по-видимому, происходит в горячих звездах. Вероятно, что многостадийный процесс «горения» водорода, в результате которого происходит синтез ядер гелия, является источником непрерывного потока солнечной радиации.
Что касается наших технических возможностей, то синтез ядер обычного водорода требует слишком высоких температур — или же слишком большого времени, за которое успевали бы происходить случайные столкновения необычайной силы, чтобы его можно было использовать. Ядра тяжелого водорода, дейтроны, легче синтезировать, но это также задача исключительной трудности. Лучше использовать тритоны, еще более тяжелые ядра водорода, — для соединения их с ядрами водорода или дейтерия. Однако тритий (сверхтяжелый водород) нужно получать в реакторе, и он дорого стоит.
Нельзя ли использовать еще более тяжелые атомы? Следующими по списку идут изотопы лития, которые могли бы служить материалом для компактной термоядерной бомбы. Вероятно, у такой бомбы запалом должна служить бомба из делящегося вещества. Проблема использования синтеза ядер в мирных целях, например для производства электрической энергии, упирается в очень трудную проблему удержания реакции. Газ должен быть раскален, скажем, до 50 000 000 °C, и любая твердая оболочка, соприкоснувшись с ним, обратится в пар. Если к тому же при синтезе выделяется полезное тепло, то задача удержания реакции еще больше усложняется. Однако можно надеяться удержать реагирующие вещества с помощью электромагнитного поля. Ведь можно же подвешивать в воздухе магнит с помощью других магнитов, хотя такое равновесное положение и является неустойчивым. Если пропускать ток достаточно большой силы через газ, то образуются потоки электронов и положительных ионов, движущихся навстречу друг другу. Под действием магнитного поля, которое окружает ток, такая колонна движущихся зарядов будет сжиматься в узкий шнур. В этом заключается так называемый пинч-эффект. Пинч-эффект и силы, создаваемые внешними магнитными полями, меняющимися по определенному закону, можно использовать для удержания плазмы — смеси быстро движущихся ядер и электронов в «магнитной бутылке», где происходит реакция синтеза.